BT-7/D07
LINUX

(2006-07)

Q1. Explain the following commands:

i) Chmod:- chmod command is used to change different permission configurations. Chmod takes two lists as its arguments: permission changes and filenames. One way uses permission symbols and is referred to as the symbolic method. The other uses what is known as “binary mask” and is referred to as either the absolute or the relative method.
ii) Mount: - The mount command takes two arguments: the storage device through which Linux accesses the file system, and the directory in the file structure to which the new file system is attached. The syntax of the mount command is:- #mount device mountpoint

iii) Ifconfig:- The ifconfig command takes as its arguments the name of an interface and an IP address, as well as options. The ifconfig then assigns the IP address to the interface. The syntax of ifconfig command is:- # ifconfig interface -host_net_flag address options
iv) Passwd:- when you add a user , an entry for that user is made in the etc/paswd file, commonly known as the password file.
Q2

a) What are the basic responsibilities of Linux Kernel?

Ans: The most basic responsibilities of the Kernel include :-

Central Processing Unit (CPU)

The Kernel will control which operations and tasks have access to the processing power of the CPU at any one time. The vast majority of CPUs can only handle one instruction at a time and therefore the Kernel will allocate a time slot for each function, which is why you will see your system slowing down the more functions you have running at the same time.

Memory
The vast majority of computer functions will require access to different areas of the internal memory at some time. Again it is the responsibility of the Kernel to decide when each process can access the memory and specify which area should be used. In the event of a lack of available memory it is also the responsibility of the Kernel to make other arrangements.

Input / Output

This is where the skill of an operating system is perhaps at its best, controlling the vast array of input and output devices available today. We are talking about monitors, keyboards, the mouse and any other devices which can communicate with your computer system.

The Linux Kernel is the key to the success of the operating system and while we have not mentioned it above, security is also a vital component of the whole package. Access to and from the Kernel needs to be water tight and this was the area where Microsoft were deemed rather unhelpful when the array of software security firms requested access to the inner workings in order to improve security for users.

b) Why we prefer GRUB over LILO?

Ans: So what exactly makes GRUB better than LILO? Here is a list of some of GRUB's frequently cited advantages:

· GRUB has a more powerful, interactive command line interface. LILO, on the other hand, only allows one command with arguments.

· LILO stores information about the location of the kernel or other operating system on the Master Boot Record (MBR). Every time a new operating system or kernel is added to the system, the Stage 1 LILO bootloader has to be manually overwritten, otherwise there is no way to boot the new OS or kernel. This method is more risky than the method used by GRUB because a mis-configured LILO configuration file may leave the system unbootable (a popular way to fix this problem is to boot from Knoppix or another live CD, chroot into the partition with mis-configured lilo.conf and correct the problem). On the other hand, correcting a mis-configured GRUB is comparatively simple as GRUB will default to its command line interface where the user can boot the system manually. This flexibility is probably the main reason why many users nowadays prefer GRUB over LILO.

· Unlike LILO, GRUB has a web site. It also has a manual, FAQ, a bug tracker, a developer mailing list and a logo. LILO has none of those.

Here is a short list of some advantages of LILO over GRUB:

· With more than a decade of development behind it, LILO is one of the most widely-used, well-tested and dependable Linux applications ever written. Most experienced system administrators are well-versed in configuring the LILO and skilled enough to deal with any emergency situation.

· The Red Hat Linux Reference Guide claims that GRUB may have difficulties booting certain hardware. It does not provide any further details, though.

· GRUB is, according to its developers, alpha-quality software. Use at your own risk.

Finally, a mind-opening quote by one of the GRUB developers Gordon Matzigkeit, as published in O'Reilly's Essential System Administration:

Some people like to acknowledge both the operating system and kernel when they talk about their computers, so they might say they use 'GNU/Linux' or 'GNU/Hurd'. Other people seem to think that the kernel is the most important part of the system, so they like to call their GNU operating systems 'Linux systems'. I, personally, believe that [both are] a grave injustice, because the boot loader is the most important software of all. I used to refer to the above systems as either 'LILO' or 'GRUB' systems. Unfortunately, nobody ever understood what I was talking about; now I just use the word 'GNU' as a pseudonym for GRUB. So, if you ever hear people talking about their alleged 'GNU' systems, remember that they are actually paying homage to the best boot loader around: GRUB!

Q2 (C) How can we make bootable device in Linux operating system?

Ans

The topic of a bootable external USB Linux hard drive (without dual-boot) is an area that is not well documented. A simple Google search shows many articles, blogs and forum posts written on this topic, all of them discuss setting up dual-boot strategies. While I did not specifically test a USB Thumb Drive and did not intend to address this device in this article, I see no reason why this would not work for Thumb Drives as well. This article was written with the goal of defining an alternative to the traditional dual boot concept and keeping each operating system isolated from each other.

While the dual-boot scenario works, this can cause undesirable issues when grub installs its files on the external drive. Should Grub install its files to the external drive, the drive must be connected before booting the computer or you will receive a Grub 17or 21 error. Based on the testing I have done in an effort to achieve the desired results, I did not want a dual-boot on either the laptops operating system (internal hard drive) or on the external USB drive.

This document applies to SLES 10 SP1, SLED 10 SP1, OpenSUSE 10.3; however based on my testing I feel that this will work with any Linux distribution. You will want to use laptop or desktop hardware in which the BIOS supports booting to a USB device.

Why would you want to do this?
Small foot print USB powered external drives are very obtainable and affordable. These drives come in various sizes with the most common and cost effective today being 250GB. This gives you the ability to:

1. Test new OS versions

2. Carry multiple working OS’s with you in the field

3. Lab issues in the field

4. Test patches

5. Perform demonstrations

All of the above and more without risking the OS installed in your laptop or desktop. While this solution may not be right for everyone; this will provide you with more options.

There are several ways to achieve the results described herein; I will describe two of these methods and you can choose which method works better for your scenario.

Method 1:

1. Insert the Linux OS Install CD/DVD

2. Reboot the computer

3. Enter the “Setup Menu”

4. Disable the internal hard drive

5. Save settings and exit

6. The computer will reboot so you can see the Post Screen

7. Push the appropriate key (F12 for Dell Laptops) to bring up the “One Time Boot Menu”

8. Select boot from CD/DVD

9. Install Linux OS (Follow your normal install procedure)

10. The only device that should appear is the external USB drive

When the install has completed:

1. Remove the Linux OS Install CD/DVD

2. Reboot the computer

3. Enter the “Setup Menu”

4. Enable the internal hard drive

5. Change the boot order to resemble

a. USB Device

b. Internal Hard drive

c. CD/DVD

6. Save settings and exit

7. The computer will reboot so you can see the Post Screen (Let the system boot as normal)

The machine will boot into your newly installed Linux OS and will have no knowledge or connection to the OS that is installed on the computers internal hard drive.

Method 2:

1. Insert the Linux OS Install CD/DVD

2. Shout down the computer

3. Remove the internal hard drive

4. Start the computer

5. The computer will boot so you can see the Post Screen

6. Push the appropriate key (F12 for Dell Laptops) to bring up the “One Time Boot Menu”

7. Select boot from CD/DVD

8. Install Linux OS (Follow your normal install procedure)

9. The only device that should appear is the external USB drive

When the install has completed:
1. Remove the Linux OS Install CD/DVD

2. Shut down the computer

3. Install internal hard drive

4. Enter the “Setup Menu”

5. Change the boot order to resemble

a. USB Device

b. Internal Hard drive

c. CD/DVD

6. Save settings and exit

7. The computer will reboot so you can see the Post Screen (Let the system boot as normal)

The machine will boot into your newly installed Linux OS and will have no knowledge or connection to the OS that is installed on the computers internal hard drive.

Issue:
During one of my tests, after all of the above steps were completed Linux on the USB External Hard drive would not boot. The computer did not see the device as a bootable device therefore the machine booted to the OS installed on the internal hard drive.

Solution:
1. Plug the external USB device into the USB port on the computer

2. Place the Linux install CD/DVD in the CD/DVD drive on the computer

3. The computer will boot so you can see the Post Screen

4. Push the appropriate key (F12 for Dell Laptops) to bring up the “One Time Boot Menu”

5. Select boot from CD/DVD

6. The main install screen will give you the option to repair the Installed OS (during my tests this did not have any unwanted effects on the computers internal hard drive or the OS installed on it)

7. Once the repair is completed remove the CD/DVD from the CD/DVD drive

8. Reboot the computer

The computer should boot to the OS installed on the external USB drive without issue. However you need to understand the BIOS in your machine; I would suggest removing any USB devices except for the hard drive before booting the computer.

Q3 (a) Explain Network Transport Layer used in TCP/IP protocol suite?
Ans

	TCP / IP NETWORK MODEL

	
	
	
	

	
	Although the OSI model is widely used and often cited as the standard, TCP/IP protocol has been used by most Unix workstation vendors.

TCP/IP is designed around a simple four-layer scheme. It does omit some features found under the OSI model. Also it combines the features of some adjacent OSI layers and splits other layers apart.

	
	
	
	

TCP/IP Network Model

An architectural model provides a common frame of reference for discussing Internet communications. It is used not only to explain communication protocols but to develop them as well. It separates the functions performed by communication protocols into manageable layers stacked on top of each other. Each layer in the stack performs a specific function in the process of communicating over a network.

Understanding Architectural Models and Protocols
In an architectural model, a layer does not define a single protocol—it defines a data communication function that may be performed by any number of protocols. Because each layer defines a function, it can contain multiple protocols, each of which provides a service suitable to the function of that layer.

Every protocol communicates with its peer. A peer is an implementation of the same protocol in the equivalent layer on a remote computer. Peer-level communications are standardized to ensure that successful communications take place. Theoretically, each protocol is only concerned with communicating to its peer—it does not care about the layers above or below it.

A dependency, however, exists between the layers. Because every layer is involved in sending data from a local application to an equivalent remote application, the layers must agree on how to pass data between themselves on a single computer. The upper layers rely on the lower layers to transfer the data across the underlying network.

Generally, TCP/IP is described using three to five functional layers. To describe TCP/IP based firewalls more precisely, the common DoD reference model have been chosen , which is also known as the Internet reference model.
[image: image1.jpg]Provides end-to-end data
delivery services.

This model is based on the three layers defined for the DoD Protocol Model in the DDN Protocol Handbook, Volume 1. These three layers are as follows: Network access layer, Host-to-host transport layer and Application layer. An additional layer, the internetwork layer, has been added to this model. The internetwork layer is commonly used to describe TCP/IP.

The four network layers defined by TCP/IP model are as follows.

Layer 1 - Link (Physical Layer)
This layer defines the network hardware and device drivers.

Layer 2 - Internetwork (Network Layer)
This layer is used for basic communication, addressing and routing. TCP/IP uses IP and ICMP protocols at the network layer.

Layer 3 - Transport
Handles communication among programs on a network. TCP and UDP falls within this layer.

Layer 4 - Application
End-user applications reside at this layer. Commonly used applications include NFS, DNS, arp, rlogin, talk, ftp, ntp and traceroute

Transport layer

The protocols at the Transport layer can solve problems like reliability ("did the data reach the destination?") and ensure that data arrives in the correct order. In the TCP/IP protocol suite, transport protocols also determine which application any given data is intended for.

The dynamic routing protocols which technically fit at this layer in the TCP/IP Protocol Suite (since they run over IP) are generally considered to be part of the Network layer; an example is OSPF (IP protocol number 89).

TCP (IP protocol number 6) is a "reliable", connection-oriented, transport mechanism providing a reliable byte stream, which makes sure data arrives complete, undamaged, and in order. TCP tries to continuously measure how loaded the network is and throttles its sending rate in order to avoid overloading the network. Furthermore, TCP will attempt to deliver all data correctly in the specified sequence. These are its main differences from UDP, and can become disadvantageous in real-time streaming or routing applications with high internetwork layer loss rates.

The newer SCTP is also a "reliable", connection-oriented, transport mechanism. It is record rather than byte oriented, and provides multiple sub-streams multiplexed over a single connection. It also provides multi-homing support, in which a connection end can be represented by multiple IP addresses (representing multiple physical interfaces), such that if one fails the connection is not interrupted. It was developed initially for telephony applications (to transport SS7 over IP), but can also be used for other applications.

UDP (IP protocol number 17) is a connectionless datagram protocol. It is a "best effort" or "unreliable" protocol - not because it is particularly unreliable, but because it does not verify that packets have reached their destination, and gives no guarantee that they will arrive in order. If an Application requires these characteristics, it must provide them itself, or use TCP.
UDP is typically used for applications such as streaming media (audio and video, etc) where on-time arrival is more important than reliability, or for simple query/response applications like DNS lookups, where the overhead of setting up a reliable connection is disproportionately large.

DCCP is currently under development by IETF. It provides TCP's flow control semantics, while keeping UDP's datagram service model visible to the user.

Both TCP and UDP are used to carry a number of higher-level applications. The applications at any given network address are distinguished by their TCP or UDP Port Number. By convention certain well known ports are associated with specific applications.
RTP is a datagram protocol that is designed for real-time data such as streaming audio and video. Although RTP uses the UDP packet format as a basis, it provides a function that is at the same protocol layer.

(b) When to use address resolution protocol?
Ans Address Resolution Protocol (arp)

The address resolution protocol (arp) is a protocol used by the Internet Protocol (IP) [RFC826], specifically IPv4, to map IP network addresses to the hardware addresses used by a data link protocol. The protocol operates below the network layer as a part of the interface between the OSI network and OSI link layer. It is used when IPv4 is used over Ethernet.
The term address resolution refers to the process of finding an address of a computer in a network. The address is "resolved" using a protocol in which a piece of information is sent by a client process executing on the local computer to a server process executing on a remote computer. The information received by the server allows the server to uniquely identify the network system for which the address was required and therefore to provide the required address. The address resolution procedure is completed when the client receives a response from the server containing the required address.

An Ethernet network uses two hardware addresses which identify the source and destination of each frame sent by the Ethernet. The destination address (all 1's) may also identify a broadcast packet (to be sent to all connected computers). The hardware address is also known as the Medium Access Control (MAC) address, in reference to the standards which define Ethernet. Each computer network interface card is allocated a globally unique 6 byte link address when the factory manufactures the card (stored in a PROM). This is the normal link source address used by an interface. A computer sends all packets which it creates with its own hardware source link address, and receives all packets which match the same hardware address in the destination field or one (or more) pre-selected broadcast/multicast addresses.

The Ethernet address is a link layer address and is dependent on the interface card which is used. IP operates at the network layer and is not concerned with the link addresses of individual nodes which are to be used.The address resolution protocol (arp) is therefore used to translate between the two types of address. The arp client and server processes operate on all computers using IP over Ethernet. The processes are normally implemented as part of the software driver that drives the network interface card.

There are four types of arp messages that may be sent by the arp protocol. These are identified by four values in the "operation" field of an arp message. The types of message are:

1. ARP request

2. ARP reply

3. RARP request

4. RARP reply

The format of an arp message is shown below:

[image: image2.png]2 15 16

Fardware Type Protocol Type

HLEN | PLEN Operaion

Sendler HA (octets 0-3)

Sencer HA (octets 45 | Sencer 1P (ootets 0-1)

Sender P (octeb 23) | Target HA (etets 0-)

Target HA (octets 2.5)

Targel P (ociehs 03)

Format of an arp message used to resolve the remote MAC Hardware Address (HA)
To reduce the number of address resolution requests, a client normally caches resolved addresses for a (short) period of time. The arp cache is of a finite size, and would become full of incomplete and obsolete entries for computers that are not in use if it was allowed to grow without check. The arp cache is therefore periodically flushed of all entries. This deletes unused entries and frees space in the cache. It also removes any unsuccessful attempts to contact computers which are not currently running.

Example of use of the Address Resolution Protocol (arp)

The figure below shows the use of arp when a computer tries to contact a remote computer on the same LAN (known as "sysa") using the "ping" program. It is assumed that no previous IP datagrams have been received form this computer, and therefore arp must first be used to identify the MAC address of the remote computer.

[image: image3.png]o e

T —
Fedaina -

The arp request message ("who is X.X.X.X tell Y.Y.Y.Y", where X.X.X.X and Y.Y.Y.Y are IP addresses) is sent using the Ethernet broadcast address, and an Ethernet protocol type of value 0x806. Since it is broadcast, it is received by all systems in the same collision domain (LAN). This is ensures that is the target of the query is connected to the network, it will receive a copy of the query. Only this system responds. The other systems discard the packet silently.

The target system forms an arp response ("X.X.X.X is hh:hh:hh:hh:hh:hh", where hh:hh:hh:hh:hh:hh is the Ethernet source address of the computer with the IP address of X.X.X.X). This packet is unicast to the address of the computer sending the query (in this case Y.Y.Y.Y). Since the original request also included the hardware address (Ethernet source address) of the requesting computer, this is already known, and doesn't require another arp message to find this out.
[image: image4.png][— Tocal renote

compuer computr
& w w

Ping program

e ——

request packet - e cotination
bardware address
gyl en s

Amprver

ICMP packetis e

quened wntl
bardvare adires
canbe msolved

apsysass 030020 13490

iomp echorepressysa

ICMPecto
server replies
Empectoreph mps

A/

/

sais i

 INCLUDEPICTURE "http://www.erg.abdn.ac.uk/users/gorry/course/images/arp-eg.gif" * MERGEFORMATINET [image: image5.png][— Tocal renote

compuer computr
& w w

Ping program

e ——

request packet - e cotination
bardware address
gyl en s

Amprver

ICMP packetis e

quened wntl
bardvare adires
canbe msolved

apsysass 030020 13490

iomp echorepressysa

ICMPecto
server replies
Empectoreph mps

A/

/

sais i

Q 4 (a) What is Network Information System (NIS)?
Ans NIS maintains configuration files for the entire network. For changes you only need to update the NIS files. NIS works for the information required for most administrative tasks, such as those relating to users, network access, or devices. For example, you cn maintain user and password information with an NIS service, having only to update those NIS password files.
 NIS files are kept on an NIS server. The NIS server maintains its information on special database files called maps.

How NIS works?
Within a n/w there must be atleast one machine acting as NIS server you can have multiple NIS servers each serving different NIS “domains”. NIS databases are in so called DBM format derived from ASCII databases. The master NIS server should have both ASCII databases and DBM databases. Slave servers will be notified to any change to NIS maps, via yppush program and automatically retrieve the necessary changes in order to synchronize their databases. NIS clients don’t need to do this since they always talk to NIS server to read the information stored in its DBM databases.
(b) How can we configure NFS file system in Linux? Explain static and automatic mounting used in NFS file system?
Ans: NFS configuration files(server)
 Configuring a system to share files and directories using NFS is a simple process. Every file system being exported to remote users via NFS as well as the access rights relating to those files systems is located in/etc/exports file. This file is read only by the exports command to give rpc.mountd and allow the remote mounting of a file system by an authorized host.
The exportfs command allows the root user to selectively export or unexport directories without restarting the NFS service. When exportfs is passed the proper options, the filesys to be exported are written to /var/lib/nfs/xtab.

Standard Mount
Mount point needs to be created before mounting an NFS file system. Example mkdir /mnt/nfs
The NFS directory can be mounted manually. Mount –t nfs server name:/exported.dir/mnt/nfs then run df –h,to see if it has been successfully mounted. Manual mounting with options other than defaults like rw, ro,hard,soft,intr,rsize,wsize.

To unmount a directory you can run command

Unmount /mnt/nfs

“Auto Mount”: Automounter provides an on-demand method of mounting NFS file system and automatically unmounts them after a designated time period of inactivity. For automount to work autofs package has to be installed. It uses indirect maps.
Automount Maps Config:- The master map /etc/auto.master: access directory indirect map file timeout in sec.

/mnt/home/etc/auto.nfs-home-timeout60

/mnt/software/etc/ auto.nfs-soft-timeout300

A client request for a directory tree whose root is listed in master map. Automounter will search specifies map for a server.

Indirect map file

/etc/auto.nfs-docs:

/etc/auto.nfs-soft:

To start automount daemon.run
	/etc/init.d/autofs/start

After you modify the maps, run
	/etc/net.d/autofs.reload

To verify that autofs is running

/etc/init.d/autofs status

Q6. What is the purpose of positional arguments?

Ans: Positional arguments are for those pieces of information that your program absolutely, positively requires to run.

A good user interface should have as few absolute requirements as possible. If your program requires 17 distinct pieces of information in order to run successfully, it doesn't much matter how you get that information from the user--most people will give up and walk away before they successfully run the program. This applies whether the user interface is a command-line, a configuration file, or a GUI: if you make that many demands on your users, most of them will simply give up.

In short, try to minimize the amount of information that users are absolutely required to supply--use sensible defaults whenever possible. Of course, you also want to make your programs reasonably flexible. That's what options are for. Again, it doesn't matter if they are entries in a config file, widgets in the ``Preferences'' dialog of a GUI, or command-line options--the more options you implement, the more flexible your program is, and the more complicated its implementation becomes. Too much flexibility has drawbacks as well, of course; too many options can overwhelm users and make your code much harder to maintain.

b) How jobs schedule in Linux with at and cron daemon?

Ans: You need to run a job at midnight when system usage is low, or you need to run jobs daily or weekly, but you would rather be sleeping, or enjoying life in some other way. Other good reasons for scheduling jobs include letting routine tasks happen automatically, or ensuring tasks are handled the same way every time. This tip helps you use the cron and at capabilities to schedule jobs periodically or at a single future time.

[image: image6.png]

Linux® and UNIX® systems allow you to schedule jobs in the future, either just once, or on a recurring schedule. This article, excerpted from the developerWorks tutorial LPI exam 102 prep: Administrative tasks, shows you how to schedule jobs periodically, and how to run a job at some future time.

Many administrative tasks must be done frequently and regularly on a Linux system. These include rotating log files so filesystems do not become full, backing up data, and connecting to a time server to keep your system time synchronized. See the full tutorial mentioned above for more about these administrative tasks. In this tip, you learn about the scheduling facilities available in Linux using the cron and anacron facilities and the crontab and at commands. Even if your system sleeps or is turned off, anacron can help it catch up the next time it is awake.

Run jobs at regular interval
Running jobs at regular intervals is managed by the cron facility, which consists of the crond daemon and a set of tables describing what work is to be done and with what frequency. The daemon wakes up every minute and checks the crontabs to determine what needs to be done. Users manage crontabs using the crontab command. The crond daemon is usually started by the init process at system startup.

To keep things simple, let's suppose that you want to run the command shown in Listing 1 on a regular basis. This command doesn't actually do anything except report the day and the time, but it illustrates how to use crontab to set up cron jobs, and we'll know when it was run from the output. Setting up crontab entries requires a string with escaped shell metacharacters, so it is best done with simple commands and parameters. In this example, the echo command will be run from within a script /home/ian/mycrontab.sh, which takes no parameters. This saves some careful work with escape characters.

Listing 1. A simple command example
	[ian@lyrebird ~]$ cat mycrontest.sh

#!/bin/bash

 echo "It is now $(date +%T) on $(date +%A)"

[ian@lyrebird ~]$./mycrontest.sh

It is now 18:37:42 on Friday

Creating a crontab
To create a crontab, you use the crontab command with the -e (for "edit") option. This opens the vi editor unless you have specified another editor in the EDITOR or VISUAL environment variable.

Each crontab entry contains six fields:

1. Minute

2. Hour

3. Day of the month

4. Month of the year

5. Day of the week

6. String to be executed by sh

Minutes and hours range from 0-59 and 0-12, respectively, while day of month and month of year range from 1-31 and 1-12, respectively. Day of week ranges from 0-6, with 0 being Sunday. Day of week may also be specified as sun, mon, tue, and so on. The sixth field is everything after the fifth field, and is interpreted as a string to pass to sh. A percent sign (%) is translated to a newline, so if you want a % or any other special character, precede it with a backslash (\). The line up to the first % is passed to the shell, while any line(s) after the % are passed as standard input.

The various time-related fields can specify an individual value, a range of values, such as 0-10 or sun-wed, or a comma-separated list of individual values and ranges. A somewhat artificial crontab entry for our example command might look like the example in Listing 2.

Listing 2. A simple crontab example
	0,20,40 22-23 * 7 fri-sat /home/ian/mycrontest.sh

In this example, our command is executed at the 0th, 20th, and 40th minutes (every 20 minutes), for the hours between 10 P.M. and midnight on Fridays and Saturdays during July. See the man page for crontab(5) for details on additional ways to specify times.

What about the output?
You may be wondering what happens to any output from the command. Most commands designed for use with the cron facility will log output using the syslog facility that is discussed in the tutorial LPI exam 102 prep: Administrative tasks. However, any output that is directed to stdout will be mailed to the user. Listing 3 shows the output you might receive from our example command.

Listing 3. Mailed cron output
	From ian@lyrebird.raleigh.ibm.com Fri Jul 6 23:00:02 2007

Date: Fri, 6 Jul 2007 23:00:01 -0400

From: root@lyrebird.raleigh.ibm.com (Cron Daemon)

To: ian@lyrebird.raleigh.ibm.com

Subject: Cron <ian@lyrebird> /home/ian/mycrontest.sh

Content-Type: text/plain; charset=UTF-8

Auto-Submitted: auto-generated

X-Cron-Env: <SHELL=/bin/sh>

X-Cron-Env: <HOME=/home/ian>

X-Cron-Env: <PATH=/usr/bin:/bin>

X-Cron-Env: <LOGNAME=ian>

X-Cron-Env: <USER=ian>

It is now 23:00:01 on Friday

Where is my crontab?
	[image: image7.png]

	Suid programs
Suid programs run with the permissions of the program file's owner rather than those of the user running the program. See our tutorial LPI exam 101 prep: Devices, Linux filesystems, and the Filesystem Hierarchy Standard for more information about suid, and see LPI exam 102 prep: Administrative tasks for more information about the passwd command.

The crontab that you created with the crontab command is stored in /etc/spool/cron under the name of the user who created it. So the above crontab is stored in /etc/spool/cron/ian. Given this, you will not be surprised to learn that the crontab command, like the passwd command, is an suid program that runs with root authority.

/etc/crontab
In addition to the user crontab files in /var/spool/cron, cron also checks /etc/crontab and files in the /etc/cron.d directory. These system crontabs have one additional field between the fifth time entry (day) and the command. This additional field specifies the user for whom the command should be run, normally root. A /etc/crontab might look like the example in Listing 4.

Listing 4. /etc/crontab
	SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

HOME=/

run-parts

01 * * * * root run-parts /etc/cron.hourly

02 4 * * * root run-parts /etc/cron.daily

22 4 * * 0 root run-parts /etc/cron.weekly

42 4 1 * * root run-parts /etc/cron.monthly

In this example, the real work is done by the run-parts command, which runs scripts from /etc/cron.hourly, /etc/cron.daily, and so on; /etc/crontab simply controls the timing of the recurring jobs. Note that the commands here all run as root. Note also that the crontab can include shell variables assignments that will be set before the commands are run.

Anacron
The cron facility works well for systems that run continuously. For systems that may be turned off much of the time, such as laptops, another facility, the anacron (for "anachronistic cron") can handle scheduling of the jobs usually done daily, weekly, or monthly by the cron facility. Anacron does not handle hourly jobs.

Anacron keeps timestamp files in /var/spool/anacron to record when jobs are run. When anacron runs, it checks to see if the required number of days has passed since the job was last run and runs it if necessary. The table of jobs for anacron is stored in /etc/anacrontab, which has a slightly different format from /etc/crontab. As with /etc/crontab, /etc/anacrontab may contain environment settings. Each job has four fields:

1. period

2. delay

3. job-identifier

4. command

The period is a number of days, but may be specified as @monthly to ensure that a job runs only once per month, regardless of the number of days in the month. The delay is the number of minutes to wait after the job is due to run before actually starting it. You can use this to prevent a flood of jobs when a system first starts. The job identifier can contain any non-blank character except slashes (/).

Both /etc/crontab and /etc/anacrontab are updated by direct editing. You do not use the crontab command to update these files or files in the /etc/cron.d directory.

Q7 Describe the term Pretty Good Privacy?

Ans: Definition of Application/PGP

PGP/MIME uses "CT: application/pgp" to enclose a PGP object within MIME. The CT: may take one parameter "format", whose value is "text" or "mime". This parameter makes it possible to embed not only text but also a MIME object in the PGP object. If the value of format parameter is "text", it indicates that the PGP object contains text. Otherwise a PGP object holds a MIME object. If the parameter is omitted, it is identical to "format=text".

A PGP/RFC822 message can be converted to a PGP/MIME message with "Mime-Version: 1.0', "CT: application/pgp", and optional "CTE:" fields. We call this kind of PGP/MIME messages conventional PGP/MIME. Note that user IDs to select public keys for encryption are equal to mail addresses on a mail header such as To: or Cc: for a PGP/RFC822 message or a conventional PGP/MIME message because it has only one PGP object.

To maintain minimum backward compatibility, if the parameter is omitted or is "text"(i.e. a conventional PGP/MIME message), the PGP object is assumed to contain localized text, which is not always US-ASCII. It can be ISO-8859-1, ISO-2022-JP or whatever. The decoded text by PGP should be treated according to local convention. For example, we assumed that the text encoded by PGP is ISO-2022-JP in Japan.

If a target object is not text, it should be converted into a MIME object which consists of a content header and a content body. Then, the MIME object is encoded by PGP to get a PGP object, which is included by a MIME object whose CT: is application/pgp.

Note that we cannot decide user IDs for public keys from the mail header in PGP/MIME. For example, one part can be encrypted for one person and another part can be encrypted for another person while the whole message is destined to a mailing list.

CTE: considerations

PGP provides radix64 encoding, which is syntactically identical to MIME base64 encoding but flagged in different manners. The PGP mechanism is self-identifying, while the MIME mechanism uses CTE: to indicate an encoding type. There are two methods to convert a target object to a "mail-safe" form. One is to encode a PGP output by MIME encoding. The other is that PGP itself converts an object to a mail-safe form and CTE: just indicates an encoding domain(i.e. 7bit or 8bit). Note that "7bit" and "8bit" specified in CTE: means that no encoding is applied to its object.

Since the content header (whose content body is a PGP object) cannot be protected with our scheme, it is quite possible for someone to forge or modify CTE: in the content header. So, it is safer for MIME readers to pass the PGP object in the content body to a PGP process without MIME decoding. For this reason, we make use of PGP's mail-safe features rather than MIME encoding. (Note that CT: in the content header is also under threat of modification. Unfortunately, our scheme is vulnerable to this kind of attack.)

PGP objects are categorized into three types. Signed objects by PGP are 7bit or 8bit. For example, 7bit text such as ISO-2022-JP results in a clear signature in 7bit whereas 8bit text such as ISO-8859-1 are tranformed into a clear signature in 8bit. A binary object is converted into 7bit text with radix64 encoding after the calculation of its signature.

Note that an object must be encoded into 7bit representation(i.e. 7bit, quoted-printable, or base64) before the signature calculation in the MOSS scheme. But such preprocessing is optional in PGP/MIME. If 7bit transformation is always required, a clear signature cannot be created from 8bit text. This limitation is very inconvenient to those who usually use 8bit text to express their native language. 8bit clear signatures have been used for a long time, so we cannot sacrifice backward compatibility by forcing 7bit representation. Usually a signature for ISO-8859-1 text is created without the format parameter. If the transport system does not support 8bit text, the localized 8bit text should be converted into a MIME object with a proper CTE: before it is passed to PGP.

The domain of encrypted and signed-then-encrypted objects by PGP is always 7bit with radix64 encoding. The MIME object whose content body is a PGP object should provide CTE: according to the encoding domain of the PGP object. CTE: 7bit can be omitted but CTE: 8bit must be provided.

Canonicalization

Since each operating system has their own type of line break, line breaks of a target object must be canonicalized before PGP calculates a digital signature and/or encrypts a target object for interoperability. When the -t option is specified, PGP first canonicalizes each line break to CRLF. This line break is identical to that of RFC822, so we can make use of this PGP feature. If a target object is localized text, we should, of course, execute PGP with the -t option.

If a target object is not text, we first convert it to a MIME object preparing an appropriate content header. It is possible to convert 8bit text to a MIME object for transport system-safe. If the MIME object is "text", "multipart", "application/postscript", or "message", it must be passed to PGP as a line-based object. So, if the original object is in the binary domain, it must be encoded to the 7bit domain when it is tranformed to a MIME object.

Since multipart and message types allow recursive structure, MIME prohibits encoding of an entire object. So the CTE: must be 7bit, 8bit or binary. In order to pass multipart and message to PGP as a line-based object, they must not include objects in the binary domain. Objects in the binary domain must be encoded by MIME before they are enclosed in a multipart or message.

Other MIME objects in 7bit or 8bit domain should be treated as line-based objects by PGP. If CTE: is "binary", it must be passed to PGP as binary. It is not necessary to apply MIME encoding to the original object in the binary domain before it is encoded by PGP. Since we do not specify the -t option for MIME objects in the binary domain, line breaks of the content header must be converted to CRLF before this object is passed to PGP.

Implementation of PGP/MIME

It is crucial to provide an easy-to-use viewer and an intuitive composer to MIME users privacy functionality so that security services in MIME will be widely used. This section describes a novel PGP/MIME interface, "Mew" (Message interface to Emacs Window), which works on Emacs. We first explain Mew's PGP/MIME composer in "Composer" section then describe a viewer in "Viewer" section. Since all methods in this section are independent on the spec of PGP/MIME, they are applicable to other privacy enhanced MIME schemes such as MOSS.

Composer

Many MIME composers define their own complicated composition grammar or force complex command line options to compose MIME messages. Complicated operations are not only hard to use but are also prone to miss operations. Moreover, most composers fail to provide methods to support deep multipart. Such a complicated and imperfect composing system will confuse users especially when composing PGP/MIME messages. Thus, requirements for PGP/MIME composers can be summarized as follows:

· The PGP/MIME composer must be able to compose PGP/MIME messages with easy operations.

· The PGP/MIME composer must not define a complicated composition grammar that is hard to understand.

· The PGP/MIME composer must not require the users to understand MIME or other syntax.

· The PGP/MIME composer must be able to compose PGP/MIME syntax without any limitations.

Mew provides two methods for composing a PGP/MIME message. One is a mark based method for creating any kind of PGP/MIME message. The other is a shortcut to handle only localized text. We first describe the shortcut method, then explain the mark based composing.

Figure 1 : An example draft

To: kazu@is.aist-nara.ac.jp

Subject: PGP signed message

Mime-Version: 1.0

This body is signed by PGP.

keiichi

Figure 2 : A conventional PGP/MIME message
To: kazu@is.aist-nara.ac.jp

Subject: PGP signed message

Mime-Version: 1.0

Content-Type: application/pgp

-----BEGIN PGP SIGNED MESSAGE-----

This body is signed by PGP.

- ---

keiichi

-----BEGIN PGP SIGNATURE-----

Version: 2.6.i

iQCVAgUBMCtrNhTyAnmgatc9AQFK5gP/Zyptfl1cX+OkbULgrUNkuOAhL4Wok+vJ

OPrD3TSIFZ/lh3T/Hjtjq6I6PELDKI9CXJFZRKgyCZhBCZRdXJP5yaWuC5S4gJNu

+zlLqs2TupfWJrK+wndRKP5N2DyxnxX3dd5CZhu9C1220/lV18zvIl5Vie0cowAe

1y/NyfxiuUs=

=hZka

-----END PGP SIGNATURE-----

In addition to the mail header and the mail body, multipart structure is displayed at the bottom of the draft buffer. This region is prepared according to the user's instruction. Key bindings of the region are different from that of the mail header and the mail body. The first column consists of marks that indicate encoding (e.g. "B" for base64 and "Q" for quoted-printable). The next column indicates the part number where numbers for directories always end with "0". The third column shows file or directory names. Note that the directory on the first line of the region indicates the entire multipart message, which must be readable only by the user for security reasons. The fourth column shows CT: and the last column indicates CD:.

Just before sending the message, a MIME message is automatically created according to the user specified files, each CT:, each CD:, and each mark. In Emacs, ISO-8859-1 is automatically chosen as the "charset" parameter for 8bit text, otherwise US-ASCII is selected. In Mule(MULtilingual Enhancement to GNU Emacs), the charset is guessed from the Mule internal multi-lingual representation.

Mew's composer integrates MIME encoding and PGP encoding, which are displayed as marks. In addition to the marks "B" and "Q", the marks "PE", "PS", and "PSE", which indicated PGP encrypt, sign, and sign-then-encrypt respectively, are provided. Note that a PGP mark on directory means that PGP encoding is applied to the entire multipart. When the user puts "PE" or "PSE" marks on any part, the user is asked to specify receivers. The user enters comma-separated user IDs in the mini buffer and then the information is displayed on the last column, overriding CD:. Note that the sender's user ID is additionally specified during encryption so that the sender can decrypt a backup message. Figure 4 illustrates an example of PGP/MIME composing. The "PE" mark is given to part 2.0 and "PS" is put on parts 1 and 2.1. Note that the user can cancel the marks at any time.

Figure 4 : Mark based composing for PGP/MIME
To: kazu@is.aist-nara.ac.jp

Subject: Cats

Mime-Version: 1.0

This is my cat.

---- multipart --

 0 1/ Multipart/Mixed

PS 1 00CoverPage Text/Plain

PE 2.0 dir/ Multipart/Mixed "kazu"

PS 2.1 cat.gif image/gif "A pretty cat"

Q 2.2 cat.ps application/postsc..

---- multipart ----

Mew maps the given file tree to PGP/MIME in postorder executing PGP as Emacs subprocesses corresponding to PGP marks. For example, the file tree in Figure 4 is converted to PGP/MIME format as follows: First the region of the mail body is stored as a file name of "00CoverPage" in the directory "1" to complete the file tree. Next Mew walks around the directory "1" in postorder to create a multipart. The charset is guessed for 00CoverPage since it is text, it is then signed by PGP. At this time, the user is required to input a passphrase. Next Mew goes down to the directory "dir" to create another multipart. When Mew passes "cat.gif" to PGP to calculate a signature, the user is asked to enter the passphrase again because the previous passphrase is not reused to prevent eavesdropping. After "cat.ps" is encoded quoted-printable, the second multipart is constructed. Mew then sends this multipart to PGP for encryption. After this step is completed, the outer multipart is prepared. Since the directory does not have a mark, the whole process is finished.

Viewer

Some MIME viewers provide full MIME functionality but many of them force users to read parts in the composed order. This frustrates users who want to read any part in any order. Since most viewers never cache analyzed MIME syntax, users also become frustrated if they have to read the same message repeatedly. This is very inconvenient, especially for PGP/MIME because users are always requested to input their passphrase every time they read encrypted PGP/MIME messages. It is natural that PGP/MIME users want to reply and cite PGP/MIME messages as if they were plain text. But PGP/MIME message should be stored in a disk storage with PGP protected format for security reasons. We thus summarize requirements for PGP/MIME viewers as follows:

· The PGP/MIME viewer must provide users with rich operations for each part.

· The PGP/MIME viewer must quickly display a PGP/MIME message if it is read repeatedly.

· The PGP/MIME viewer must be able to treat a PGP/MIME message as plain text but store the message in a PGP protected format in disk storage.

We first describes the internal mechanism of Mew's PGP/MIME viewer in "Internals of Mew's PGP/MIME viewer" section and then explain how to handle PGP warning in "Warning handling" section.

Internals of Mew's PGP/MIME viewer

Mew's viewer consists of a local form decoder, a MIME syntax analyzer, and a displayer. When a user reads a MIME message, Mew copies the message into a cache buffer of Emacs. The local form decoder decodes MIME format according to CTE: to obtain raw data. If CT: is application/pgp, it decrypts or verifies PGP objects. Every time a PGP object is decrypted, the user is requested to input his passphrase, that is, the passphrase is not reused to prevent eavesdropping. The PGP decoded object is recursively decoded according to CTE: if the format is "mime". When Mew runs on Mule, the decoder transforms enveloped multi-lingual text to the Mule internal character representation according to the charset parameter. Mew also converts a conventional PGP/MIME message to Mule internal character representation following a local convention. In this way, the decoder decodes a PGP/MIME message in preoder so that each part has a native data image.

Next the analyzer analyzes the structure of the locally formatted message recursively. It saves the analyzed syntax as a local variable of the cache buffer. Cache buffers are managed as an LRU list and the list-size is customizable. If the message is a singlepart, the displayer displays the singlepart according to CT:. So, a conventional PGP/MIME message is simply displayed in a message buffer. If the message is multipart, the displayer simply shows the structure in a summary buffer so that the user can select any part. Figure 5 is an example of a displayer displaying a message syntax in the summary buffer corresponding to Figure 4.

Figure 5 : PGP/MIME syntax displayed in the summary buffer

 1 M08/11 keiiti-s@is.aist- Cats

 1 Text/Plain

 2.1 image/gif "A pretty cat"

 2.2 application/postscript

The user can move the cursor onto any part he or she wishes and then display the part in any order. Since the message has been already decoded and stored in the cache buffer, the user can reply and cite the message as if it was plain text. The user is not required to input the passphrase the next time the message is read unless expires from the cache.

Mew does not automatically decode PGP/RFC822 by PGP because it does not have CT: application/pgp. Mew does provide a function to decode a message by PGP manually so that the user can decode PGP/RFC822 to obtain localized text.

Warning handling

One of most important functionalities of enhancing privacy services for MIME is to report the results of verification of a digital signature. PGP reports the success of verification as a "Good signature". If any alteration is found, a "Bad signature" warning is returned. PGP's key management system provides a grassroot web of trust. The highlight of this system is validity of a public key, an indication that the key actually belongs to the person to whom it says it belongs. PGP warns the user if the validity of a public key is not complete. Mew is designed to report the value of validity -- complete, marginal, untrusted, or undefined. Since Mew automatically decrypts encrypted messages by PGP, users may not notice they are encrypted. So, Mew notifies users of the parts of a PGP/MIME message that are encrypted by PGP.

An earlier version of Mew, that supported only conventional PGP/MIME, inserted the report of PGP into the bottom of the message. This approach is no longer practical for PGP/MIME because an object encoded by PGP is not restricted to text. A binary object is destroyed if the PGP report is inserted into the bottom of it.

So, Mew makes use of content headers of each part to hold the report of PGP. After the decoder decodes a PGP object, it inserts an "X-Mew:" field whose value indicates the report of PGP. The analyzer corrects X-Mew: fields analyzing MIME syntax and saves them as a part of MIME syntax to the local variable of the cache buffer. The displayer inserts corrected X-Mew: fields to the mail header when the mail header is displayed so that the user can see the PGP report first. This fields should not be stored statically since validity of public keys will change. A sly cracker could insert illegal X-Mew: fields to deceive the receivers. So, the decoder carefully removes X-Mew: fields first.

Figure 6 shows an example of a PGP warning corresponding to Figure 4. The number in angle brackets indicates the part number. If the number is omitted, the warning is for the entire message. The first line tells us that part 1 is signed by "Keiiti" whose public key's validity is complete and that the verification succeeded. The second line shows that part 2 was encrypted multipart. Part 2.1 contains a good signature by Keiiti. Figure 7 gives a snapshot image of the PGP/MIME viewer displaying the message of Figure 4. The GIF image of a cat, which is signed by Keiiti, is displayed by an image viewer.

Figure 6 : PGP/MIME warning

X-Mew: <1> Good PGP sign "SHIMA Keiichi <keiiti-s@is.aist-nara.ac.jp>" COMPLETE

X-Mew: <2> PGP decrypted.

X-Mew: <2.1> Good PGP sign "SHIMA Keiichi <keiiti-s@is.aist-nara.ac.jp>" COMPLETE

Figure 7 : A snapshot of the PGP/MIME viewer

[image: image8.png]= Mew [
1 M08/11 keliti-s@is, aist- Cats ((-—-Next_Part (Fri_Aug_11_23:43:52_1995)—
Text/Plain

A
lSubJec
From SHIMA](enchl (EE) (kediti-s@is, aist-
ITo: kazu@is, 2, ac, Jp

Date: Fri, 11 Aug 1995 23:44:20 +0900

Reply-To: keiiti-s@is, aist-nara, ac, Jp
Mine-Yersion: 1,0

(Content-Type: Multipart/Mired;
boundary="--Next,_Part (Fri_dug_11_93:43:52
I MaJler Mew beta version 0,98 on Emacs 19,
[E-tle Good PGP sizn "SHIMA Keiichi (keiiti-g
PGP dectypted. i
. 1) Good PGP sign "SHIMA Kelichi (keiitil8

If the public key of an originator is not found in the recipient's keyring or the keyring itself does not exist, signature verification fails. If a PGP/MIME message is not encrypted for the recipient, PGP cannot decrypt it. Mew reports such causes of PGP decoding failure to X-Mew: field.

Q7 (a) What is a Firewall? Explain its different types?

 Ans A firewall protects your network from unwanted Internet traffic. The primary functions of a firewall are to let good traffic pass through while ‘bad’ traffic gets blocked. The most important part of a firewall is its access control features that distinguish between good and bad traffic.

[image: image9.png]

When installed, a firewall exists between your computer(s) and the Internet. The firewall lets you request web pages, download files, chat, etc. while making sure other people on the internet can not access services on your computer like file or print sharing. Some firewalls are pieces of software that run on your computer. Other firewalls are built into hardware and protect your whole network from attacks.

[image: image10.png]

Everyone connected to the Internet should be running some sort of firewall. Programs can be downloaded on the Internet that can scan huge ranges of IP address for vulnerabilities like file sharing services. These programs are easy to download and run. Almost no network knowledge is needed to use these programs to exploit or harm your computer. Any kind of firewall will keep you safe from these types of attacks.

[image: image11.png]

Software Firewall
Software firewalls are programs that run on your computer and nestle themselves between your network card software drivers and your operating system. They intercept attacks before your operating system can even acknowledge them. Many free firewalls of [image: image15.png]2023083

m‘n

Ppr-o

this type exist on the Internet. Here are some free firewalls
Simple NAT firewall
The firewalls that are built into broadband routers and software like Microsoft ICS are very simple firewalls. They protect your LAN by not letting anyone figure out how to ‘directly’ talk to any of the computers on your LAN. This level of protection will keep out almost all kinds of hackers. Advanced hackers may be able to take advantage of certain inadequacies of NAT based firewalls, but they are few and far between.

[image: image12.png]

Firewalls with stateful packet inspection
The new trend in home networking firewalls is called stateful packet inspection. This is an advanced form of firewall that examines each and every packet of data as it travels through the firewall. The firewall scans for problems in the packet that might be a symptom of a ‘denial of service’ (dos) attack or advanced attacks.

[image: image13.png]

Most people are never subject to these types of attacks, but there are some areas of the Internet that invite these kinds of attacks. Most often, these attacks come from being involved in certain kinds of competitive on-line gaming or participating in questionable [image: image16.png]

mIrc channels.

(b) Describe the term Pretty Good Privacy (PGP). How it can be implemented?

Ans Definition of Application/PGP

PGP/MIME uses "CT: application/pgp" to enclose a PGP object within MIME. The CT: may take one parameter "format", whose value is "text" or "mime". This parameter makes it possible to embed not only text but also a MIME object in the PGP object. If the value of format parameter is "text", it indicates that the PGP object contains text. Otherwise a PGP object holds a MIME object. If the parameter is omitted, it is identical to "format=text".

A PGP/RFC822 message can be converted to a PGP/MIME message with "Mime-Version: 1.0', "CT: application/pgp", and optional "CTE:" fields. We call this kind of PGP/MIME messages conventional PGP/MIME. Note that user IDs to select public keys for encryption are equal to mail addresses on a mail header such as To: or Cc: for a PGP/RFC822 message or a conventional PGP/MIME message because it has only one PGP object.

To maintain minimum backward compatibility, if the parameter is omitted or is "text"(i.e. a conventional PGP/MIME message), the PGP object is assumed to contain localized text, which is not always US-ASCII. It can be ISO-8859-1, ISO-2022-JP or whatever. The decoded text by PGP should be treated according to local convention. For example, we assumed that the text encoded by PGP is ISO-2022-JP in Japan.

If a target object is not text, it should be converted into a MIME object which consists of a content header and a content body. Then, the MIME object is encoded by PGP to get a PGP object, which is included by a MIME object whose CT: is application/pgp.

Note that we cannot decide user IDs for public keys from the mail header in PGP/MIME. For example, one part can be encrypted for one person and another part can be encrypted for another person while the whole message is destined to a mailing list.

CTE: considerations

PGP provides radix64 encoding, which is syntactically identical to MIME base64 encoding but flagged in different manners. The PGP mechanism is self-identifying, while the MIME mechanism uses CTE: to indicate an encoding type. There are two methods to convert a target object to a "mail-safe" form. One is to encode a PGP output by MIME encoding. The other is that PGP itself converts an object to a mail-safe form and CTE: just indicates an encoding domain(i.e. 7bit or 8bit). Note that "7bit" and "8bit" specified in CTE: means that no encoding is applied to its object.

Since the content header (whose content body is a PGP object) cannot be protected with our scheme, it is quite possible for someone to forge or modify CTE: in the content header. So, it is safer for MIME readers to pass the PGP object in the content body to a PGP process without MIME decoding. For this reason, we make use of PGP's mail-safe features rather than MIME encoding. (Note that CT: in the content header is also under threat of modification. Unfortunately, our scheme is vulnerable to this kind of attack.)

PGP objects are categorized into three types. Signed objects by PGP are 7bit or 8bit. For example, 7bit text such as ISO-2022-JP results in a clear signature in 7bit whereas 8bit text such as ISO-8859-1 are tranformed into a clear signature in 8bit. A binary object is converted into 7bit text with radix64 encoding after the calculation of its signature.

Note that an object must be encoded into 7bit representation(i.e. 7bit, quoted-printable, or base64) before the signature calculation in the MOSS scheme. But such preprocessing is optional in PGP/MIME. If 7bit transformation is always required, a clear signature cannot be created from 8bit text. This limitation is very inconvenient to those who usually use 8bit text to express their native language. 8bit clear signatures have been used for a long time, so we cannot sacrifice backward compatibility by forcing 7bit representation. Usually a signature for ISO-8859-1 text is created without the format parameter. If the transport system does not support 8bit text, the localized 8bit text should be converted into a MIME object with a proper CTE: before it is passed to PGP.

The domain of encrypted and signed-then-encrypted objects by PGP is always 7bit with radix64 encoding. The MIME object whose content body is a PGP object should provide CTE: according to the encoding domain of the PGP object. CTE: 7bit can be omitted but CTE: 8bit must be provided.

Canonicalization

Since each operating system has their own type of line break, line breaks of a target object must be canonicalized before PGP calculates a digital signature and/or encrypts a target object for interoperability. When the -t option is specified, PGP first canonicalizes each line break to CRLF. This line break is identical to that of RFC822, so we can make use of this PGP feature. If a target object is localized text, we should, of course, execute PGP with the -t option.

If a target object is not text, we first convert it to a MIME object preparing an appropriate content header. It is possible to convert 8bit text to a MIME object for transport system-safe. If the MIME object is "text", "multipart", "application/postscript", or "message", it must be passed to PGP as a line-based object. So, if the original object is in the binary domain, it must be encoded to the 7bit domain when it is tranformed to a MIME object.

Since multipart and message types allow recursive structure, MIME prohibits encoding of an entire object. So the CTE: must be 7bit, 8bit or binary. In order to pass multipart and message to PGP as a line-based object, they must not include objects in the binary domain. Objects in the binary domain must be encoded by MIME before they are enclosed in a multipart or message.

Other MIME objects in 7bit or 8bit domain should be treated as line-based objects by PGP. If CTE: is "binary", it must be passed to PGP as binary. It is not necessary to apply MIME encoding to the original object in the binary domain before it is encoded by PGP. Since we do not specify the -t option for MIME objects in the binary domain, line breaks of the content header must be converted to CRLF before this object is passed to PGP.

Implementation of PGP/MIME

It is crucial to provide an easy-to-use viewer and an intuitive composer to MIME users privacy functionality so that security services in MIME will be widely used. This section describes a novel PGP/MIME interface, "Mew" (Message interface to Emacs Window), which works on Emacs. We first explain Mew's PGP/MIME composer in "Composer" section then describe a viewer in "Viewer" section. Since all methods in this section are independent on the spec of PGP/MIME, they are applicable to other privacy enhanced MIME schemes such as MOSS.

Composer

Many MIME composers define their own complicated composition grammar or force complex command line options to compose MIME messages. Complicated operations are not only hard to use but are also prone to miss operations. Moreover, most composers fail to provide methods to support deep multipart. Such a complicated and imperfect composing system will confuse users especially when composing PGP/MIME messages. Thus, requirements for PGP/MIME composers can be summarized as follows:

· The PGP/MIME composer must be able to compose PGP/MIME messages with easy operations.

· The PGP/MIME composer must not define a complicated composition grammar that is hard to understand.

· The PGP/MIME composer must not require the users to understand MIME or other syntax.

· The PGP/MIME composer must be able to compose PGP/MIME syntax without any limitations.

Mew provides two methods for composing a PGP/MIME message. One is a mark based method for creating any kind of PGP/MIME message. The other is a shortcut to handle only localized text. We first describe the shortcut method, then explain the mark based composing.

A shortcut for conventional PGP/MIME

Since users mostly use localized text in daily life, localized text with PGP protection has been exchanged. So, it is a good idea to create the most used PGP/MIME messages without any troublesome operations. Non-MIME viewers treat conventional PGP/MIME exactly as PGP/RFC822. Note that we do not require pre-encoding to 8bit text, so conventional PGP/MIME messages are completely backward compatible with non-MIME viewers. Note also that MIME viewers which do not support PGP/MIME treat the messages as text/plain.

Mew provides three commands to create a conventional PGP/MIME message. Each cuts the mail body in a draft buffer to pass it to PGP, then insert the PGP output to the draft buffer in turn. The signature function asks a user to input his passphrase. This passphrase is never echoed back and is delivered to PGP interactively. It should be noted that if a passphrase is given to PGP as a command line argument or via an environment variable, the passphrase may be monitored by local eavesdroppers on a multi-user OS. Thus, the passphrase must be sent to PGP interactively to prevent eavesdropping by non-privileged users. But we should keep in mind that privileged users may still monitor a keyboard or pipe stream.

The function for encryption automatically extracts user IDs from To: and Cc: fields to specify receivers to PGP. Note that the sender's user ID is also specified so that the sender can decrypt the back up message. The function for sign-then-encrypt executes PGP with extracted user IDs then passes the input passphrase to PGP.

Since Mew runs on Emacs, each command is bound to a key. Figure 1 shows an example of an RFC822 message and Figure 2 illustrates a PGP/MIME message after a signature function is executed and a passphrase is input in the mini buffer.

Figure 1 : An example draft

To: kazu@is.aist-nara.ac.jp

Subject: PGP signed message

Mime-Version: 1.0

This body is signed by PGP.

keiichi

Figure 2 : A conventional PGP/MIME message
To: kazu@is.aist-nara.ac.jp

Subject: PGP signed message

Mime-Version: 1.0

Content-Type: application/pgp

-----BEGIN PGP SIGNED MESSAGE-----

This body is signed by PGP.

- ---

keiichi

-----BEGIN PGP SIGNATURE-----

Version: 2.6.i

iQCVAgUBMCtrNhTyAnmgatc9AQFK5gP/Zyptfl1cX+OkbULgrUNkuOAhL4Wok+vJ

OPrD3TSIFZ/lh3T/Hjtjq6I6PELDKI9CXJFZRKgyCZhBCZRdXJP5yaWuC5S4gJNu

+zlLqs2TupfWJrK+wndRKP5N2DyxnxX3dd5CZhu9C1220/lV18zvIl5Vie0cowAe

1y/NyfxiuUs=

=hZka

-----END PGP SIGNATURE-----

Mark based composing

Mew's MIME composer provides a simple yet powerful composing of file structure mapping to MIME syntax. That is, directories correspond to multipart and files indicate single part. A user can create any complex multipart with file operations such as copy, link, remove, and make a directory, which are bound to single keys. The default CT: is determined by the suffix of the filename. For example, application/postscript is selected for the file "cat.ps". Encoding strategy is decided by pre-defined rules. For example, base64 is chosen for audio/basic, quoted-printable for ISO-8859-1 text. The user can change CT:, CD:, and CTE: at any time. Multipart/Mixed is chosen for the default CT: of directories. Figure 3 is an example of a draft buffer of a multipart, depth 2.

Figure 3 : Composing a complicated MIME message
To: kazu@is.aist-nara.ac.jp

Subject: Cats

Mime-Version: 1.0

This is my cat.

---- multipart --

 0 1/ Multipart/Mixed

 1 00CoverPage Text/Plain

 2.0 dir/ Multipart/Mixed

B 2.1 cat.gif image/gif "A pretty cat"

Q 2.2 cat.ps application/postsc..

---- multipart ----

In addition to the mail header and the mail body, multipart structure is displayed at the bottom of the draft buffer. This region is prepared according to the user's instruction. Key bindings of the region are different from that of the mail header and the mail body. The first column consists of marks that indicate encoding (e.g. "B" for base64 and "Q" for quoted-printable). The next column indicates the part number where numbers for directories always end with "0". The third column shows file or directory names. Note that the directory on the first line of the region indicates the entire multipart message, which must be readable only by the user for security reasons. The fourth column shows CT: and the last column indicates CD:.

Just before sending the message, a MIME message is automatically created according to the user specified files, each CT:, each CD:, and each mark. In Emacs, ISO-8859-1 is automatically chosen as the "charset" parameter for 8bit text, otherwise US-ASCII is selected. In Mule(MULtilingual Enhancement to GNU Emacs), the charset is guessed from the Mule internal multi-lingual representation.

Mew's composer integrates MIME encoding and PGP encoding, which are displayed as marks. In addition to the marks "B" and "Q", the marks "PE", "PS", and "PSE", which indicated PGP encrypt, sign, and sign-then-encrypt respectively, are provided. Note that a PGP mark on directory means that PGP encoding is applied to the entire multipart. When the user puts "PE" or "PSE" marks on any part, the user is asked to specify receivers. The user enters comma-separated user IDs in the mini buffer and then the information is displayed on the last column, overriding CD:. Note that the sender's user ID is additionally specified during encryption so that the sender can decrypt a backup message. Figure 4 illustrates an example of PGP/MIME composing. The "PE" mark is given to part 2.0 and "PS" is put on parts 1 and 2.1. Note that the user can cancel the marks at any time.

Figure 4 : Mark based composing for PGP/MIME
To: kazu@is.aist-nara.ac.jp

Subject: Cats

Mime-Version: 1.0

This is my cat.

---- multipart --

 0 1/ Multipart/Mixed

PS 1 00CoverPage Text/Plain

PE 2.0 dir/ Multipart/Mixed "kazu"

PS 2.1 cat.gif image/gif "A pretty cat"

Q 2.2 cat.ps application/postsc..

---- multipart ----

Mew maps the given file tree to PGP/MIME in postorder executing PGP as Emacs subprocesses corresponding to PGP marks. For example, the file tree in Figure 4 is converted to PGP/MIME format as follows: First the region of the mail body is stored as a file name of "00CoverPage" in the directory "1" to complete the file tree. Next Mew walks around the directory "1" in postorder to create a multipart. The charset is guessed for 00CoverPage since it is text, it is then signed by PGP. At this time, the user is required to input a passphrase. Next Mew goes down to the directory "dir" to create another multipart. When Mew passes "cat.gif" to PGP to calculate a signature, the user is asked to enter the passphrase again because the previous passphrase is not reused to prevent eavesdropping. After "cat.ps" is encoded quoted-printable, the second multipart is constructed. Mew then sends this multipart to PGP for encryption. After this step is completed, the outer multipart is prepared. Since the directory does not have a mark, the whole process is finished.

Viewer

Some MIME viewers provide full MIME functionality but many of them force users to read parts in the composed order. This frustrates users who want to read any part in any order. Since most viewers never cache analyzed MIME syntax, users also become frustrated if they have to read the same message repeatedly. This is very inconvenient, especially for PGP/MIME because users are always requested to input their passphrase every time they read encrypted PGP/MIME messages. It is natural that PGP/MIME users want to reply and cite PGP/MIME messages as if they were plain text. But PGP/MIME message should be stored in a disk storage with PGP protected format for security reasons. We thus summarize requirements for PGP/MIME viewers as follows:

· The PGP/MIME viewer must provide users with rich operations for each part.

· The PGP/MIME viewer must quickly display a PGP/MIME message if it is read repeatedly.

· The PGP/MIME viewer must be able to treat a PGP/MIME message as plain text but store the message in a PGP protected format in disk storage.

We first describes the internal mechanism of Mew's PGP/MIME viewer in "Internals of Mew's PGP/MIME viewer" section and then explain how to handle PGP warning in "Warning handling" section.

Internals of Mew's PGP/MIME viewer

Mew's viewer consists of a local form decoder, a MIME syntax analyzer, and a displayer. When a user reads a MIME message, Mew copies the message into a cache buffer of Emacs. The local form decoder decodes MIME format according to CTE: to obtain raw data. If CT: is application/pgp, it decrypts or verifies PGP objects. Every time a PGP object is decrypted, the user is requested to input his passphrase, that is, the passphrase is not reused to prevent eavesdropping. The PGP decoded object is recursively decoded according to CTE: if the format is "mime". When Mew runs on Mule, the decoder transforms enveloped multi-lingual text to the Mule internal character representation according to the charset parameter. Mew also converts a conventional PGP/MIME message to Mule internal character representation following a local convention. In this way, the decoder decodes a PGP/MIME message in preoder so that each part has a native data image.

Next the analyzer analyzes the structure of the locally formatted message recursively. It saves the analyzed syntax as a local variable of the cache buffer. Cache buffers are managed as an LRU list and the list-size is customizable. If the message is a singlepart, the displayer displays the singlepart according to CT:. So, a conventional PGP/MIME message is simply displayed in a message buffer. If the message is multipart, the displayer simply shows the structure in a summary buffer so that the user can select any part. Figure 5 is an example of a displayer displaying a message syntax in the summary buffer corresponding to Figure 4.

Figure 5 : PGP/MIME syntax displayed in the summary buffer

 1 M08/11 keiiti-s@is.aist- Cats

 1 Text/Plain

 2.1 image/gif "A pretty cat"

 2.2 application/postscript

The user can move the cursor onto any part he or she wishes and then display the part in any order. Since the message has been already decoded and stored in the cache buffer, the user can reply and cite the message as if it was plain text. The user is not required to input the passphrase the next time the message is read unless expires from the cache.

Mew does not automatically decode PGP/RFC822 by PGP because it does not have CT: application/pgp. Mew does provide a function to decode a message by PGP manually so that the user can decode PGP/RFC822 to obtain localized text.

Warning handling

One of most important functionalities of enhancing privacy services for MIME is to report the results of verification of a digital signature. PGP reports the success of verification as a "Good signature". If any alteration is found, a "Bad signature" warning is returned. PGP's key management system provides a grassroot web of trust. The highlight of this system is validity of a public key, an indication that the key actually belongs to the person to whom it says it belongs. PGP warns the user if the validity of a public key is not complete. Mew is designed to report the value of validity -- complete, marginal, untrusted, or undefined. Since Mew automatically decrypts encrypted messages by PGP, users may not notice they are encrypted. So, Mew notifies users of the parts of a PGP/MIME message that are encrypted by PGP.

An earlier version of Mew, that supported only conventional PGP/MIME, inserted the report of PGP into the bottom of the message. This approach is no longer practical for PGP/MIME because an object encoded by PGP is not restricted to text. A binary object is destroyed if the PGP report is inserted into the bottom of it.

So, Mew makes use of content headers of each part to hold the report of PGP. After the decoder decodes a PGP object, it inserts an "X-Mew:" field whose value indicates the report of PGP. The analyzer corrects X-Mew: fields analyzing MIME syntax and saves them as a part of MIME syntax to the local variable of the cache buffer. The displayer inserts corrected X-Mew: fields to the mail header when the mail header is displayed so that the user can see the PGP report first. This fields should not be stored statically since validity of public keys will change. A sly cracker could insert illegal X-Mew: fields to deceive the receivers. So, the decoder carefully removes X-Mew: fields first.

Figure 6 shows an example of a PGP warning corresponding to Figure 4. The number in angle brackets indicates the part number. If the number is omitted, the warning is for the entire message. The first line tells us that part 1 is signed by "Keiiti" whose public key's validity is complete and that the verification succeeded. The second line shows that part 2 was encrypted multipart. Part 2.1 contains a good signature by Keiiti. Figure 7 gives a snapshot image of the PGP/MIME viewer displaying the message of Figure 4. The GIF image of a cat, which is signed by Keiiti, is displayed by an image viewer.

Figure 6 : PGP/MIME warning

X-Mew: <1> Good PGP sign "SHIMA Keiichi <keiiti-s@is.aist-nara.ac.jp>" COMPLETE

X-Mew: <2> PGP decrypted.

X-Mew: <2.1> Good PGP sign "SHIMA Keiichi <keiiti-s@is.aist-nara.ac.jp>" COMPLETE

Figure 7 : A snapshot of the PGP/MIME viewer

[image: image14.png]= Mew [
1 M08/11 keliti-s@is, aist- Cats ((-—-Next_Part (Fri_Aug_11_23:43:52_1995)—
Text/Plain

A
lSubJec
From SHIMA](enchl (EE) (kediti-s@is, aist-
ITo: kazu@is, 2, ac, Jp

Date: Fri, 11 Aug 1995 23:44:20 +0900

Reply-To: keiiti-s@is, aist-nara, ac, Jp
Mine-Yersion: 1,0

(Content-Type: Multipart/Mired;
boundary="--Next,_Part (Fri_dug_11_93:43:52
I MaJler Mew beta version 0,98 on Emacs 19,
[E-tle Good PGP sizn "SHIMA Keiichi (keiiti-g
PGP dectypted. i
. 1) Good PGP sign "SHIMA Kelichi (keiitil8

If the public key of an originator is not found in the recipient's keyring or the keyring itself does not exist, signature verification fails. If a PGP/MIME message is not encrypted for the recipient, PGP cannot decrypt it. Mew reports such causes of PGP decoding failure to X-Mew: field.

