BT-7/D06

Linux

Paper: IT-451

Q1
a) How many types of user and groups in a Linux? How to create them?
Ans: Each user of a UNIX system such as Debian has a username which uniquely identifies them. Usernames are associated with user IDs (or UIDs), and in fact it is the UID which the underlying system uses to identify users; usernames, however, are more mnemonic and tend to be used for most day-to-day purposes.

Usernames are typically composed of alphanumeric characters, that is letters and numbers. Most usernames are forms of the user's own name (for instance "test", "testnew", or "tnew") or relate to a role or a pseudo-user created for the purpose of administering part of the system, for instance "root" (for the superuser account) and "www-data" (for the account which owns and runs web servers and related services under Debian).

UIDs are numbers from zero to 65534. The numbers are grouped as follows:

UIDs 0-99 are globally allocated by the Debian project and are used for system accounts. The "root" account, for instance, is UID 0.

UIDs 100-999 are for system users which have not been allocated by the Debian project.

UIDs 1000-29999 are normal user accounts.

UID 65534 is user "nobody", an account with no rights or permissions.

Users may usually be referred to by either username or UID.
 Groups and Group IDs in Debian Linux
Groups are used to refer to logical groups of users on the system. Groups have group IDs (GIDs) just as users have UIDs, and the numeric ranges for different types of groups are the same as those for users.

A typical example of a group on the system might be "webadmin" where people who administer a website might be grouped together. This would allow users to create files and directories to which all of the "webadmin" group had read or write access.

Groups may usually be referred to by either their name or GID.

0-99:
Globally allocated by the Debian project, the same on every Debian system. These ids will appear in the passwd and group files of all Debian systems, new ids in this range being added automatically as the base-passwd package is updated.
Packages which need a single statically allocated uid or gid should use one of these; their maintainers should ask the base-passwd maintainer for ids.
100-999:
Dynamically allocated system users and groups. Packages which need a user or group, but can have this user or group allocated dynamically and differently on each system, should use adduser --system to create the group and/or user. adduser will check for the existence of the user or group, and if necessary choose an unused id based on the ranges specified in adduser.conf.
1000-29999:
Dynamically allocated user accounts. By default adduser will choose UIDs and GIDs for user accounts in this range, though adduser.conf may be used to modify this behavior.
30000-59999:
Reserved.
60000-64999:
Globally allocated by the Debian project, but only created on demand. The ids are allocated centrally and statically, but the actual accounts are only created on users' systems on demand.
These ids are for packages which are obscure or which require many statically-allocated ids. These packages should check for and create the accounts in /etc/passwd or /etc/group (using adduser if it has this facility) if necessary. Packages which are likely to require further allocations should have a "hole" left after them in the allocation, to give them room to grow.
65000-65533:
Reserved.
65534:
User nobody. The corresponding gid refers to the group nogroup.
65535:
(uid_t)(-1) == (gid_t)(-1) must not be used, because it is the error return sentinel value. [image: image1.png]

[image: image2.png]

b) Explain different methods of installing Linux?
Ans:

It seems Debian has its own special way of doing pretty much everything, including compiling kernels. Debian has a system that allows you to compile your kernel and automatically build a Debian package around it, allowing you to install a new kernel in the same way as you install any other package. It also means you can build a kernel on one machine and then just install the package on other machines without having to recompile or track down all the loose ends - great if you need to upgrade a number of similar machines!

Getting the Source

You can get the kernel source yourself directly from kernel.org or a mirror if you like, but of course there are even packages of the kernel source. A quick

apt-cache search kernel-source

will get you a list of kernel source packages all ready to go. Picking one as an example, you could just do

apt-get install kernel-source-2.4.20

to get the source downloaded to your system. You'll then end up with an archive sitting in /usr/src, which is where most kernel work is done. Now you can extract the source package:

cd /usr/src
bunzip2 kernel-source-2.4.20.tar.bz2
tar xf kernel-source-2.4.20.tar

That will leave you with a "/usr/src/kernel-source-2.4.20" directory, uncompressed and ready to configure. First though create a symlink to it called "linux", like this:

ln -s kernel-source-2.4.20 linux

If there's already a symlink there (such as to an old kernel source) you'll need to delete it first. Now you can easily get to your kernel source tree just by typing

cd /usr/src/linux

Tools You Will Need

In order to configure, compile and package your new kernel you will need a range of tools. To install the main packages:

apt-get install kernel-package libncurses5-dev

This will also cause it to grab a pile of supporting packages based on their dependencies.

Configuration Methods

There are a number of ways to configure a kernel prior to compiling it, and all are invoked as arguments to the 'make' command. Make sure you have a shell open in the kernel source directory (should be /usr/src/linux if you followed my directions above) before you try any of these. In increasing order of sophistication, they are:

editing .config

The actual configuration is saved in the source directory as a text file called '.config'. If you really want to (or if you are trying to find an option some readme has listed by name, such as 'CONFIG_PACKET') you can edit this file directly using a text editor such as Vi or Anjuta. This should be very rare though.

make config

The most basic approach, this will just ask you a whole heap of questions one after another. Personally I hate doing it this way, because it's sequential and you have to go through a heap of stuff you probably couldn't care less about. Only bother with this as a last resort, such as if other options aren't available to you for some reason.

make menuconfig

This is the most common way to do the configuration. It will display a nice, keyboard-driven menu which you can navigate using arrows, enter and the space bar. However, one catch that can trip you up is that you need to have the development libraries for Ncurses installed, not just Ncurses itself. That's why I got you to install the libncurses5-dev package a few paragraphs ago ;-)

make xconfig

The preferred method for machines with X, this is very similar to menuconfig except it's all done in a nice point-n-click GUI with mouse navigation. The possible gotcha to getting this working is you'll need tk8.3: if you get errors saying it can't find 'wish', do:

apt-get install tk8.3

and all should be well.

Configuring The Kernel

Whichever configuration method you choose, the next thing to do is examine the settings for the different kernel options and make changes as required.

There are a huge number of kernel options, so to help you find things they are grouped together in a logical way in different major and minor sections. The different configuration methods have their own ways to represent this, but they should all be fairly straightforward to follow.

I won't go into details of how to do the kernel configuration here, because what you need to configure will vary dramatically and there are plenty of tutorials on the net (including the Kernel-HowTo!) that explain this in detail. Basically though you need to work through each menu in turn to find options and modules you want to enable, and set them to either off (not available), on (compiled straight into the kernel) or module (compiled separately so it can be loaded when needed).

Once you've finished going through the options, quit and save to have your choices written out to a configuration file to be used by the compiler.

One little trick to note is that the actual configuration details are stored in a file called ".config" in the kernel source directory. Once you've gone to all the trouble of setting up a kernel the way you want it, moving to a new kernel can be painful if you have to go through the configuration process from scratch and you'd be almost certain to miss something crucial - I know I usually do! To make things easier for yourself, you can copy the .config file into the new kernel source directory to have all your options carried over automatically. Then you can run the configuration again just to check things over, save and go on as before. Provided you're not changing to a totally new kernel type, that trick can save you a lot of time. Beware if you're moving to a totally different kernel though, such as from 2.4.x to 2.5.x, because many of the options will be totally different and while the old config will still work, it may not have some options activated that only appear in the new kernel.

Compiling And Packaging

This is the point where your kernel is actually compiled and placed in a package. Normally that would be a lot of work, but thanks to the tools provided by the 'kernel-package' package it's now one of the easiest steps.

If you've read a Kernel How-To you've probably seen a sequence of commands such as 'make dep && make clean && make bzImage'. You don't need to do any of that, just type:

make-kpkg kernel-image

in the /usr/src/linux and it'll be taken care of. The kernel packaging tools first compile your kernel and modules according to the configuration you just generated, then build a Debian package called 'kernel-image-<version>_<architecture>.deb' outside the current source directory, ie: in /usr/src.

This stage can take a while, depending on your machine speed and what modules you selected. Expect anything from 10 minutes to a half hour, during which time you'll see a very long stream of debugging information that probably won't be of any interest to you at all unless something goes seriously wrong.

Installing Your Kernel Package

We're almost there! What you will have now is a kernel, custom compiled according to your requirements and set up as a Debian package ready to install.

Installing your new kernel is now just a matter of using dpkg as root to install the package like you would any other Debian package:

dpkg -i kernel-image-2.4.20_10.00.Custom_i386.deb

(or whatever your package is called). It may ask you if you want to create a boot floppy using that image: the dozens of machines I manage don't have a single floppy drive among them, so I always say no, but if you want to you can say yes to have it create one for you.

It will then ask you if you want to install a boot block using the existing /etc/lilo.conf: if you are using Lilo as a bootloader (the default for Woody) then just say yes.

By now what will actually have happened is that Dpkg will have put your new kernel image in the /boot directory where kernels are normally stored, created a symlink from /vmlinuz to your new kernel (you can verify this by typing 'ls -l /vmlinuz'), modified your /etc/lilo.conf so Lilo can find your new kernel, moved the previous kernel so it's available as an emergency fallback in case your new kernel borks, and re-run Lilo to activate the changes.

Note that at this point you will not be running the new kernel: it's just set up, ready to go for next time you reboot. Installing a new kernel is one of the very few things that actually requires you to reboot a Linux system.

Setting Lilo Prompts

Lilo allows you to have a number of kernels installed and select which one you want to use. To play it safe, you should configure Lilo to display a list of available kernels so that if you reboot to your new kernel and find you made a big mistake you can just reboot and select the previous kernel from Lilo's list.

Open /etc/lilo.conf in a text editor, and make sure you have lines in it similar to the following:

prompt
delay=100
timeout=100

Those lines are probably already in there, but commented out (and probably with different delay values). All they do is tell Lilo to bring up a list of available kernels on boot, and wait 10 seconds (100 deci-seconds Ã� don't ask me why that interval was chosen!) before proceeding to boot the default kernel.

Rebooting And Testing

Time for the big test! If you are running X, exit the session and reboot. If not, just type 'reboot' as root. When Lilo loads you will be presented with a list of available kernels, including your new one. Select it and hit Enter.

Once your machine has booted, you can check the boot messages to see what the new kernel loaded by looking through the dmesg log:

less /var/log/dmesg

If everything worked as expected, congratulations! You've just compiled and installed a custom kernel The Debian Way.

Installing On Other Machines

This is where the convenience of compiling kernels The Debian Way becomes most obvious. If you want to install your custom kernel on other machines, the process is very simple: just copy the .deb package you created to the target machine, and install it using Dpkg exactly as before. Simple!

There's no need to compile the kernel on each machine, or copy the source code to them, or even have a compiler installed on them. All the hard work was done once on one machine, and doesn't need to be repeated.

Q3

a) What is TFTP server? How TFTP server is different from FTP server?

 Ans: PumpKIN is an open source, fully functional, free TFTP server and TFTP client, which implements TFTP according to RFC1350. It also implements block size option, which allows transfer of files over 32MB, as well as transfer size and transfer timeout options described in RFC2348 and RFC2349.

The primary use of PumpKIN is maintenance of the network equipment (such as router firmware upgrade) that fetches images from TFTP server, although it is also useful for transfering files between parties involved in a conversation over ntalk connection using our T42 software (it also detects ntalk conversation held over now obsolete program 'wintalk').

The main PumpKIN features are:

· Fully standard-compliant TFTP file transfer

· Unlimited simultaneous transfers both for TFTP server and client

· Support for TFTP blocksize option allows transfer of large files if both TFTP server and client support it

· Convenient GUI

· Combines TFTP server and TFTP client

· Originally developed for Windows 95, it reportedly runs on all Win32 platforms: Windows 98, Windows NT, ME, XP

· Can run in background, taking up a 256 pixels of screen nicely packed as a 16x16 square in your notification tray area

· Open source for those willing to add missing features, fix bugs and examine code for potential flaws and fun

· You're free to torture it the way you want to as long as you preserve original author's credentials

· It would cost you nothing unless you're willing to monetarily express your gratitude and make a donation (yes, it means "free" or "freeware", just go and download it)

· The download size is about that of the high quality screenshot below

Note that PumpKIN is not an FTP server, neither it is an FTP client, it is a TFTP server and TFTP client. TFTP is not FTP, these are different protocols. TFTP, unlike FTP, is used primarily for transferring files to and from the network equipment (e.g. your router, switch, hub, whatnot firmware upgrade or backup, or configuration backup and restore) that supports using of TFTP server for, not for general purpose serving downloadable files or retrieving files from the FTP servers around the world.

[image: image3.jpg]x|
e e e X 4= 4= x="a
Fie ype | peer ACK e[| GetFie |4
]
PutFie |4
12
4 oz . ——
(Ibelr (Qo
[T e |,
Fonsing Tele et
] Pumpkinere = v
Heb |1
e] B |]
'screenshot.bmp' of type|
Tne o sreenthot G T e T I
'screenshot bmp' of type ‘netascil'is requested from 192.168.89.1
Transterof screenshot.bmp has successiul completed |1
Dk e o e retoce § renseted fon 15516983 1
il e o e mtoc eqretcd om 195165551

Vr A g A g A g A g A g A g A g A A

b) What is Virtual hosting? Explain its types?

 Ans Feature: Using Virtual Hosts

One of the most important facilities in Apache is its ability to run 'Virtual Hosts'. This is now the essential way to run multiple web services - each with different host names and URLs - which appear to be completely separate sites. This is widely used by ISPs, hosting sites and content providers who need to manage multiple sites but do not want to buy a new machine for each one. In this issues we explain how to go about setting up a virtual host on your machine, what you need to do to get the hostname working, and how to configure Apache.

Picking an IP address
There are two types of virtual hosts: IP-based and non-IP-based. The former is where each virtual host has its own IP address. You will need a new IP address for each virtual host you want to set up, either from your existing allocation or by obtaining more from your service provider. Once you have extra IP addresses, you tell your machine to handle them. On some operating systems, you can give a single ethernet interface multiple addresses (typically with an ifconfig alias command). On other systems you will have to have a different physical interface for each IP address (typically by buying extra ethernet cards).

IP addresses are a resource that costs money and are increasingly difficult to get hold of, so modern browsers can now also use 'non-IP' virtual hosts. This lets you use the same IP address for multiple host names. When the server receives an incoming Web connection it does not know the hostname what was used in the URL, however the new HTTP/1.1 specification adds a facility where the browser must tell the server the hostname it is using, on the Host: header. If an older browser connects to a non-IP virtual host, it will not send the Host: header, so the server will have to respond with a list of possible virtual hosts. Apache provides some help for configuring a site for both old and new browsers.

Picking a Hostname and Updating the DNS
Having selected an IP address, the next stage is to update the DNS so that browsers can convert the hostname into the right address. The DNS is the system that every machine connected to the Internet uses to find the IP address of host names. If your hostname is not in the DNS, no-one will be able to connect to your server (except by the unfriendly IP address).

If the virtual host name you are going to use is under your existing domain, you can just add the record into your own DNS server. If the virtual host name is in someone else's domain, you will need to get them to add it to their DNS server files. In some cases, you will want to use a domain not yet used on the internet, in which case you will have to apply for the domain name from the InterNIC and set up the primary and secondary DNS servers for it, before adding the entry for your virtual host.

In any of these cases, the entry you need to add to the DNS is an address record (an A record) pointing at the appropriate IP address. For example, say you want the domain www.my-dom.com to access your host with IP address 10.1.2.3: you will need to add the following line to the DNS zone file for my-dom.com:

 www A 10.1.2.3

Now users can enter http://www.my-dom.com/ as a URL in their browsers and get to your web server. However it will return the same information as if the machine's original hostname had been used. So the final stage is to tell Apache how to respond differently to the different addresses.

How Apache Handles Virtual Hosts
Configuring Apache for virtual hosts is a two stage process. Firstly, it needs to be told which IP addresses (and ports) to listen to for incoming web connections. By default Apache listens to port 80 on all IP addresses of the local machine, and this is often sufficient. If you have a more complex requirement, such as listening on various port numbers, or only to specific IP addresses, the BindAddress or Listen directives can be used.

Secondly, having accepted an incoming web connection, the server needs to be configured to handle the request differently depending on what virtual host it was addressed to. This usually involves configuring Apache to use a different DocumentRoot.

Telling Apache Which Addresses to Listen To
If you are happy for Apache to listen to all local IP addresses on the port specified by the Port directive, you can skip this section. However there are some cases where you will want to use the directives explained here:

· If you have many IP addresses on the machine but only want to run a web server on some of them

· If one or more of your virtual hosts is on a different port

· If you want to run multiple copies of the Apache server serving different virtual hosts

There are two ways of telling Apache what addresses and ports to listen two: either you use the BindAddress directive to specify a single address or port, or you use the Listen directive to any number of specific addresses or ports.

For example, if you run your main server on IP address 10.1.2.3 port 80, and a virtual host on IP 10.1.2.4 port 8000, you would use:

 Listen 10.1.2.3:80

 Listen 10.1.2.4:8000

Listen and BindAddress are documented on the Apache site.

Configuring the Virtual Hosts
Having got Apache to listen to the appropriate IP addresses and ports, the final stage is to configure the server to behave differently for requests on each of the different addresses. This is done using <VirtualHost> sections in the configuration files, normally in httpd.conf.

A typical (but minimal) virtual host configuration looks like this:

 <VirtualHost 10.1.2.3>

 DocumentRoot /www/vhost1

 ServerName www.my-dom.com

 </VirtualHost>

This should be placed in the httpd.conf file. You would replace the text '10.1.2.3' with one of your virtual host IP addresses. If you want to specify a port as well, follow the IP address with a colon and the port number (eg '10.1.2.4:8000'). If omitted, the port defaults to 80.

If no <VirtualHost> sections are given in the configuration files, Apache will treat requests from the different addresses and ports identically. In terms of setting up virtual hosts, we call the default behaviour the 'main server' configuration. Unless overridden by <VirtualHost> sections, the main server behaviour will be inherited by all the virtual hosts. When configuring virtual hosts, you need to decide what changes need to be made in each of the virtual host configurations.

Any directives inside a <VirtualHost> section apply to just that virtual host. The directives either override the configuration give in the main server, or supplement it, depending on the directive. For example, the DocumentRoot directive in a <VirtualHost> section overrides the main server's DocumentRoot, while AddType supplements the main server's mime types.

Now, when a request arrives, Apache uses the IP address and port it arrived on to find a matching virtual host configuration. If no virtual host matches the address and port, it is handled by the main server configuration. If it does match a virtual host address, Apache will use the configuration of that virtual server to handle the request.

For the example above, the server configuration used will be the same as the main server, except that the DocumentRoot will be /www/vhost1, and the ServerName will by www.my-dom.com. Directives commonly set in <VirtualHost> sections are DocumentRoot, ServerName, ErrorLog and TransferLog. Directives that deal with handling requests and resources are valid inside <VirtualHost> sections. However some directives are not valid inside <VirtualHost> sections, including BindAddress, StartSevers, Listen, Group and User.

You can have as many <VirtualHost> sections as you want. You can choose to leave one or more of your virtual hosts being handled by the main server, or have a <VirtualHost> for every available address and port, and leave the main server with no requests to handle.

VirtualHost sections for non-IP Virtual Hosts
Non-IP virtual hosts are configured in a very similar way. The IP address that the requests will arrive on is given in the <VirtualHost> directive, and the host name is put in the ServerName directive. The difference is that there will (usually) be more than one <VirtualHost> section handling the same IP address. In order for Apache to know whether a request arriving on a particular IP address is supposed to be a name-based requests, the NameVirtualHost directive is used to tell Apache the IP addresses for name-based requests. A virtual host can handle more than one non-IP hostname by using the ServerAlias directive, in addition to the ServerName.

Q4 (a) What is Samba server? Explain various methods to configure samba server in detail?
Ans : Introducing Samba
The whole point of networking is to allow computers to easily share information. Sharing information with other Linux boxes, or any UNIX host, is easy--tools such as FTP and NFS are readily available and frequently set up easily ``out of the box''. Unfortunately, even the most die-hard Linux fanatic has to admit the operating system most of the PCs in the world are running is one of the various types of Windows. Unless you use your Linux box in a particularly isolated environment, you will almost certainly need to exchange information with machines running Windows. Assuming you're not planning on moving all of your files using floppy disks, the tool you need is Samba.

Samba is a suite of programs that gives your Linux box the ability to speak SMB (Server Message Block). SMB is the protocol used to implement file sharing and printer services between computers running OS/2, Windows NT, Windows 95 and Windows for Workgroups. The protocol is analogous to a combination of NFS (Network File System), lpd (the standard UNIX printer server) and a distributed authentication framework such as NIS or Kerberos. If you are familiar with Netatalk, Samba does for Windows what Netatalk does for the Macintosh. While running the Samba server programs, your Linux box appears in the ``Network Neighborhood'' as if it were just another Windows machine. Users of Windows machines can ``log into'' your Linux server and, depending on the rights they are granted, copy files to and from parts of the UNIX file system, submit print jobs and even send you WinPopup messages. If you use your Linux box in an environment that consists almost completely of Windows NT and Windows 95 machines, Samba is an invaluable tool.

[image: image4.png]Fle Edt View Hep

s e =
E DebiPice.
Booris Derri Gaen
E. e T ot
Bresse Fiedo olerkin
o Bits L B

B iankwind DougBates -
%\a Ifohccesspackcton server

2 Jeare Gk
e iy e
EX JinStagg

‘

[abiects]selected

Figure 1. The Network Neighborhood, Showing the Samba Server

Samba also has the ability to do things that normally require the Windows NT Server to act as a WINS server and process ``network logons'' from Windows 95 machines. A PAM module derived from Samba code allows you to authenticate UNIX logins using a Windows NT Server. A current Samba project seeks to reverse engineer the proprietary Windows NT domain-controller protocol and re-implement it as a component of Samba. This code, while still very experimental, can already successfully process a logon request from a Windows NT Workstation computer. It shouldn't be long before it will act as a full-fledged Primary Domain Controller (PDC), storing user account information and establishing trust relationships with other NT domains. Best of all, Samba is freely available under the GNU public license, just as Linux is. In many environments the Windows NT Server is required only to provide file services, printer spools and access control to a collection of Windows 95 machines. The combination of Linux and Samba provides a powerful low-cost alternative to the typical Microsoft solution.

Windows Networking

Understanding how Samba does its job is easier if you know a little about how Windows networking works. Windows clients use file and printer resources on a server by transmitting ``Server Message Block'' over a NetBIOS session. NetBIOS was originally developed by IBM to define a networking interface for software running on MS-DOS or PC-DOS. It defines a set of networking services and the software interface for accessing those services, but does not specify the actual protocol used to move bits on the network.

Three major flavors of NetBIOS have emerged since it was first implemented, each differing in the transport protocol used. The original implementation was referred to as NetBEUI (NetBIOS Extended User Interface), which is a low-overhead transport protocol designed for single segment networks. NetBIOS over IPX, the protocol used by Novell, is also popular. Samba uses NetBIOS over TCP/IP, which has multiple advantages.

TCP/IP is already implemented on every operating system worth its salt, so it has been relatively easy to port Samba to virtually every flavor of UNIX, as well as OS/2, VMS, AmigaOS, Apple's Rhapsody (which is really NextSTEP) and (amazingly) mainframe operating systems like CMS. Samba is also used in embedded systems, such as stand-alone printer servers and Whistle's InterJet Internet appliance. Using TCP/IP also means that Samba fits in nicely on large TCP/IP networks, such as the Internet. Recognizing these advantages, Microsoft has renamed the combination of SMB and NetBIOS over TCP/IP the Common Internet Filesystem (CIFS). Microsoft is currently working to have CIFS accepted as an Internet standard for file transfer.

[image: image5.png]SMB's view

NetBIOS API

oL oo
SN

inggeN

Xdl1or0
SOigIeN

Figure 2. SMB's Network View compared to OSI Networking Reference Model

Samba's Components

A Samba server actually consists of two server programs: smbd and nmbd. smbd is the core of Samba. It establishes sessions, authenticates clients and provides access to the file system and printers. nmbd implements the ``network browser''. Its role is to advertise the services that the Samba server has to offer. nmbd causes the Samba server to appear in the ``Network Neighborhood'' of Windows NT and Windows 95 machines and allows users to browse the list of available resources. It would be possible to run a Samba server without nmbd, but users would need to know ahead of time the NetBIOS name of the server and the resource on it they wish to access. nmbd implements the Microsoft network browser protocol, which means it participates in browser elections (sometimes called ``browser wars''), and can act as a master or back-up browser. nmbd can also function as a WINS (Windows Internet Name Service) server, which is necessary if your network spans more than one TCP/IP subnet.

Samba also includes a collection of other tools. smbclient is an SMB client with a shell-based user interface, similar to FTP, that allows you to copy files to and from other SMB servers, as well as allowing you to access SMB printer resources and send WinPopup messages. For users of Linux, there is also an SMB file system that allows you to attach a directory shared from a Windows machine into your Linux file system. smbtar is a shell script that uses smbclient to store a remote Windows file share to, or restore a Windows file share from a standard UNIX tar file.

The testparm command, which parses and describes the contents of your smb.conf file, is particularly useful since it provides an easy way to detect configuration mistakes. Other commands are used to administer Samba's encrypted password file, configure alternate character sets for international use and diagnose problems.

Configuring Samba

As usual, the best way to explain what a program can do is to show some examples. For two reasons, these examples assume that you already have Samba installed. First, explaining how to build and install Samba would be enough material for an article of its own. Second, since Samba is available as Red Hat and Debian packages shortly after each new stable release is announced, installation under Linux is a snap. Further, most ``base'' installations of popular distributions already automatically install Samba.

Before Samba version 1.9.18 it was necessary to compile Samba yourself if you wished to use encrypted password authentication. This was true because Samba used a DES library to implement encryption, making it technically classified as a munition by the U.S. government. Binary versions of Samba with encrypted password support could not be legally exported from the United States, which led mirror sites to avoid distributing pre-compiled copies of Samba with encryption enabled. Starting with version 1.9.18, Samba uses a modified DES algorithm not subject to export restrictions. Now the only reason to build Samba yourself is if you like to test the latest alpha releases or you wish to build Samba with non-standard features.

Since SMB is a large and complex protocol, configuring Samba can be daunting. Over 170 different configuration options can appear in the smb.conf file, Samba's configuration file. In spite of this, have no fear. Like nearly all aspects of UNIX, it is pretty easy to get a simple configuration up and running. You can then refine this configuration over time as you learn the function of each parameter. Last, the latest version of Samba, when this article was written in late January, was 1.9.18p1. It is possible that the behavior of some of these options will have changed by the time this is printed. As usual, the documentation included with the Samba distribution (especially the README file) is the definitive source of information.

The smb.conf file is stored by the Red Hat and Debian distributions in the /etc directory. If you have built Samba yourself and haven't modified any of the installation paths, it is probably stored in /usr/local/samba/lib/smb.conf. All of the programs in the Samba suite read this one file, which is structured like a Windows *.INI file, for configuration information. Each section in the file begins with a name surrounded by square brackets and either the name of a service or one of the special sections: [global], [homes] or [printers].

Each configuration parameter is either a global parameter, which means it controls something that affects the entire server, or a service parameter, which means it controls something specific to each service. The [global] section is used to set all the global configuration options, as well as the default service settings. The [homes] section is a special service section dynamically mapped to each user's home directory. The [printers] section provides an easy way to share every printer defined in the system's printcap file.

A Simple Configuration

The following smb.conf file describes a simple and useful Samba configuration that makes every user's home directory on my Linux box available over the network.

[global]

netbios name = FRODO

workgroup = UAB-TUCC

server string = John Blair's Linux Box

security = user

printing = lprng

[homes]

comment = Home Directory

browseable = no

read only = no

The settings in the [global] section set the name of the host, the workgroup of the host and the string that appears next to the host in the browse list. The security parameter tells Samba to use ``user level'' security. SMB has two modes of security: share, which associates passwords with specific resources, and user, which assigns access rights to specific users. There isn't enough space here to describe the subtleties of the two modes, but in nearly every case you will want to use user-level security.

The printing command describes the local printing system type, which tells Samba exactly how to submit print jobs, display the print queue, delete print jobs and other operations. If your printing system is one that Samba doesn't already know how to use, you can specify the commands to invoke for each print operation.

Since no encryption mode is specified, Samba will default to using plaintext password authentication to verify every connection using the standard UNIX password utilities. Remember, if your Linux distributions uses PAM, the PAM configuration must be modified to allow Samba to authenticate against the password database. The Red Hat package handles this automatically. Obviously, in many situations, using plaintext authentication is foolish. Configuring Samba to support encrypted passwords is outside the scope of this article, but is not difficult. See the file ENCRYPTION.txt in the /docs directory of the Samba distribution for details.

The settings in the [homes] section control the behavior of each user's home directory share. The comment parameter sets the string that appears next to the resource in the browse list. The browseable parameter controls whether or not a service will appear in the browse list. Something non-intuitive about the [homes] section is that setting browseable = no still means that a user's home directory will appear as a directory with its name set to the authenticated user's username. For example, with browseable = no, when I browse this Samba server I will see a share called jdblair. If browseable = yes, both a share called homes and jdblair would appear in the browse list. Setting read only = no means that users should be able to write to their home directory if they are properly authenticated. They would not, however, be able to write to their home directory if the UNIX access rights on their home directory prevented them from doing so. Setting read only = yes would mean that the user would not be able to write to their home directory regardless of the actual UNIX permissions.

The following configuration section would grant access to every printer that appears in the printcap file to any user that can log into the Samba server. Note that the guest ok = yes normally doesn't grant access to every user when the server is using user-level security. Every print service must define printable = yes.

[printers]

browseable = no

guest ok = yes

printable = yes

This last configuration snippet adds a server share called public that grants read-only access to the anonymous ftp directory. You will have to set up the printer driver on the client machine. You can use the printer name and printer driver commands to automate the process of setting up the printer client on Windows 95 and Windows NT clients.

[public]

comment = Public FTP Directory

path = /home/ftp/pub

browseable = yes

read only = yes

guest ok = yes

[image: image6.png][_[CIx]

File Edt View Took Help

Airos oot o
Do = e
Elane (8 comm commiaser
Freddie [Biclaser jobrconiroHaser
Frodo idblair Home Directory
21 idblsic S bishop-aser
L1 public Public FTP Directory
@ P Sy Flde
oo
o
s

- el |

6 abiects]

Figure 3. Appearance of Samba Configuration in Windows Explorer

Be aware that this description doesn't explain some subtle issues, such as the difference between user and share level security and other authentication issues. It also barely scratches the surface of what Samba can do. On the other hand, it's a good example of how easy it can be to create a simple but working smb.conf file.
Conclusions

Samba is the tool of choice for bridging the gap between UNIX and Windows systems. This article discussed using Samba on Linux in particular, but it is also an excellent tool for providing access to more traditional UNIX systems like Sun and RS/6000 servers. Further, Samba exemplifies the best features of free software, especially when compared to commercial offerings. Samba is powerful, well supported and under continuous active improvement by the Samba Team.

c) What is LDAP? How to configure LDAP server?
 Ans

Q5 (a) How to change the password of Linux loader?

Ans What will happen if you lose your password for “root”, since “root” is the God of LINUX? You will never get it back but you can reset the password easily. For that, you have to boot in single user mode, it depends on your boot loader.

1. Grub : Select the Linux system you want from the graphical menu and then press ‘e’, you will find yourself in a mini editor, there you can make changes in boot commands. Move the cursor to end of the boot command line, add a space there and either a “1″ or word “single”. Then enter press Enter and ‘b’ to boot this line.

2. Lilo : Hit any key but Enter at the boot menu. If that take to a command prompt type Linux single and press Enter boot system again.

Now your password is set to blank which is dangerous so don’t forget to reset it again
b) How to configure domain controller and what are the requirements to do this?
Ans Domain controller role: Configuring a domain controller

Domain controller role: Configuring a domain controller

Domain controllers store data and manage user and domain interactions, including user logon processes, authentication, and directory searches. If you plan to use this server to provide the Active Directory directory service to network users and computers, configure this server as a domain controller.

To configure a server as a domain controller, install Active Directory on the server. There are four options available in the Active Directory Installation Wizard. You can create an additional domain controller in an existing domain, a domain controller for a new child domain, a domain controller for a new domain tree, or a domain controller for a new forest. If you are not sure which role you need, read about each role by clicking the role option.

Notes
	•
	If you have already installed a domain controller role and you want to view next steps, in the list below, click the domain controller configuration that you installed, and then click Next steps: Completing additional tasks.

	•
	If you need to reconfigure your server for a different role, you can remove existing server roles. By removing the domain controller role, you will uninstall Active Directory from this server. After Active Directory has been uninstalled, this server will no longer participate in replication of directory objects and domain-based user authentication requests.

Creating an additional domain controller for an existing domain

Create additional domain controllers when you want to improve the availability and reliability of network services. By adding additional domain controllers, you can provide fault tolerance, balance the load of existing domain controllers, provide additional infrastructure support to sites, and improve performance by making it easier for clients to connect to a domain controller when they log on to the network. For example, as seen in the following illustration, by adding a new domain controller (DC2) to the microsoft.com domain, it helps offset the load on other domain controllers.

This topic explains the basic steps that you must follow to create an additional domain controller in your organization.

This process involves using the Configure Your Server Wizard and the Active Directory Installation Wizard to install Active Directory on this server. When you have finished setting up your domain controller, you can complete additional configuration tasks.

Configuring your domain controller

To configure a domain controller, start the Configure Your Server Wizard by doing either of the following:

	•
	From Manage Your Server, click Add or remove a role. By default, Manage Your Server starts automatically when you log on. To open Manage Your Server, click Start, click Control Panel, double-click Administrative Tools, and then double-click Manage Your Server.

	•
	To open the Configure Your Server Wizard, click Start, click Control Panel, double-click Administrative Tools, and then double-click Configure Your Server Wizard.

On the Server Role page, click Domain Controller (Active Directory), and then click Next.

This section describes each of the steps in this process and outlines the required choices and decisions you will make as you configure your domain controller

Q5 c) How to change the password of Linux loader?

Ans: What will happen if you lose your password for “root”, since “root” is the God of LINUX? You will never get it back but you can reset the password easily. For that, you have to boot in single user mode, it depends on your boot loader.

3. Grub : Select the Linux system you want from the graphical menu and then press ‘e’, you will find yourself in a mini editor, there you can make changes in boot commands. Move the cursor to end of the boot command line, add a space there and either a “1″ or word “single”. Then enter press Enter and ‘b’ to boot this line.

4. Lilo : Hit any key but Enter at the boot menu. If that take to a command prompt type Linux single and press Enter boot system again.

Now your password is set to blank which is dangerous so don’t forget to reset it again.

Q6 a) What is the difference between the POP3 and IMAP servers?
Ans The Difference Between POP3 and IMAP
There are two different protocols available to access e-mail: POP3 and IMAP. POP3 is useful when e-mail is checked from only one computer. IMAP is the better choice when you would like to check your mail from multiple computers, at work and home, for example. IMAP has the added benefit of accessing folders on the server, allowing you to organize your e-mail, and access it from anywhere. If you use Webmail, you should use IMAP on all of your e-mail clients. Use of a POP3 mail client in association with Webmail can cause errors in your inbox that will result in a temporary loss of access to your mail.

The Difference
POP3 works by reviewing the inbox on the mail server, and downloading the new messages to your computer. IMAP downloads the headers of the new messages on the server, then retrieves the message you want to read when you click on it.

When using POP3, your mail is stored on your PC. When using IMAP, the mail is stored on the mail server. Unless you copy a message to a “Local Folder” the messages are never copied to your PC.

Scenarios of Use
POP3
 You only check e-mail from one computer.

 You want to remove your e-mail from the mail server.

IMAP

 You check e-mail from multiple locations.

 you use Webmail.

Tips
Keep your Inbox small! This will speed up your e-mail retrieval. Checking the e-mail is directly dependent on how many e-mail messages are in your inbox on the mail server.

POP3

· Set to remove mail from server after 30 days.

· Don’t check more frequently than every 15 minutes.

· 75 MB is the maximum for POP3 users. POP’ing large mail boxes consumes excessive server resources.

IMAP

· Do NOT check all folders for new messages! This slows your e-mail substantially.

· Use “mail/” (without the quotes) as your IMAP folder directory.

· You can set your client to download the mail and to remove the mail from the server, like a POP3 client.

· Organize your mail into folders, and archive your older messages. This speeds e-mail retrieval by minimizing the number of messages in the inbox.

[image: image7.png]

[image: image8.png]

Errors caused by using POP3 and Webmail
When used in conjunction with a permanent e-mail client, Webmail can be a useful way to check and send messages while you are away from your computer. However, if there is a POP3 e-mail client automatically checking your mail every so many minutes, and you are also accessing Webmail from another location, there is the possibility that your mailbox will become corrupt. It will appear as if your mailbox is empty in Webmail, and your mail client will deny you access to your messages. You mailbox can be restored by simply calling the Help Desk; there is no reason to become alarmed. This can be avoided by setting your mail client to use IMAP.

b) What is the difference between IPV6 and IPV4?

Ans Traditionally, a TCP/IP address is organized into four segments, consisting of numbers separated by periods. This is called the IP address. The IP address actually represents a 32-bit integer whose binary values identify the network and host. This form of IP addressing adheres to Internet Protocol, version 4, also known as IPv4. IPv4 the kind of addressing, described here is still in wide use. Currently a new version of the IP protocol called Internet Protocol version 6 (IPv6) is gradually replacing the older IPv4 version. IPv6 expands the number of possible IP addresses using a 128-bit address. It is fully compatible with systems still using IPv4. IPv6 addresses are represented differently, using a set of eight 16-bit segments, each separated by a colon. Each segment is represented by a hexadecimal number. A sample address would be:
FEDC: 0:0:200c:800:BA98:7654:3210
IPv6 features simplified headers that allow for faster processing. It also provides support for faster processing. It also provides support for encryption and authentication. Its most significant advantage is extending the address space to cover 2 to the power of 128 possible hosts (billions of billions of billions-a lot). This extends far beyond the 4.2 billion supported by IPv4.
(C) What are the steps of e-mail transaction?
Ans A sender sends an email to receive through a relaying SMTP server. The recipients gets the email from the receiving SMTP server either through IMAP, POP3 or shared file systems.

[image: image9]
Any combination of sender relaying SMTP, receiving SMTP and the recipient can physically reside on the same or different computers.

“Email Headers and Envelope”

A message enclosed in a envelope. An email envelope header is similar to envelope of hardcopy letter. The header contains information that isn’t usually found on a real world envelope but is essential to email delivery and troubles heating. The envelope header is usually hidden when you view an email and message header is usually visible. Together these 2 headers are called full headers.

Message Header Fields

Anyone who has used email is familiar with message header includes “from” “To”
“CC”, “Date”. Fields in email identity the sender and intended receiver by email addresses.

Q7 a) Explain domain name system resource record types in detail with example?
Ans Use of the Domain Name System has been discussed in previous chapters, without going into detail on the setup of the server providing the service. This chapter describes setting up a simple, small domain with one Domain Name System (DNS) nameserver on a NetBSD system. It includes a brief explanation and overview of the DNS; further information can be obtained from the DNS Resources Directory (DNSRD)

 DNS Background and Concepts

The DNS is a widely used naming service on the Internet and other TCP/IP networks. The network protocols, data and file formats, and other aspects of the DNS are Internet Standards, specified in a number of RFC documents, and described by a number of other reference and tutorial works. The DNS has a distributed, client-server architecture. There are reference implementations for the server and client, but these are not part of the standard. There are a number of additional implementations available for many platforms.

 Naming Services

Naming services are used to provide a mapping between textual names and configuration data of some form. A nameserver maintains this mapping, and clients request the nameserver to resolve a name into its attached data.

The reader should have a good understanding of basic hosts to IP address mapping and IP address class specifications,
In the case of the DNS, the configuration data bound to a name is in the form of standard Resource Records (RR's). These textual names conform to certain structural conventions.

 The DNS namespace

The DNS presents a hierarchical name space, much like a UNIX filesystem, pictured as an inverted tree with the root at the top.

TOP-LEVEL .org
 |
MID-LEVEL .diverge.org
 ______________________|________________________
 | | |
BOTTOM-LEVEL strider.diverge.org samwise.diverge.org wormtongue.diverge.org

The system can also be logically divided even further if one wishes at different points. The example shown above shows three nodes on the diverge.org domain, but we could even divide diverge.org into subdomains such as "strider.net1.diverge.org", "samwise.net2.diverge.org" and "wormtongue.net2.diverge.org"; in this case, 2 nodes reside in "net2.diverge.org" and one in "net1.diverge.org".

There are directories of names, some of which may be sub-directories of further names. These directories are sometimes called zones. There is provision for symbolic links, redirecting requests for information on one name to the records bound to another name. Each name recognised by the DNS is called a Domain Name, whether it represents information about a specific host, or a directory of subordinate Domain Names (or both, or something else).

Unlike most filesystem naming schemes, however, Domain Names are written with the innermost name on the left, and progressively higher-level domains to the right, all the way up to the root directory if necessary. The separator used when writing Domain Names is a period, ".".

Like filesystem pathnames, Domain Names can be written in an absolute or relative manner, though there are some differences in detail. For instance, there is no way to indirectly refer to the parent domain like with the UNIX .. directory. Many (but not all) resolvers offer a search path facility, so that partially-specified names can be resolved relative to additional listed sub-domains other than the client's own domain. Names that are completely specified all the way to the root are called Fully Qualified Domain Names or FQDNs. A defining characteristic of an FQDN is that it is written with a terminating period. The same name, without the terminating period, may be considered relative to some other sub-domain. It is rare for this to occur without malicious intent, but in part because of this possibility, FQDNs are required as configuration parameters in some circumstances.

On the Internet, there are some established conventions for the names of the first few levels of the tree, at which point the hierarchy reaches the level of an individual organisation. This organisation is responsible for establishing and maintaining conventions further down the tree, within its own domain.

 Resource Records

Resource Records for a domain are stored in a standardised format in an ASCII text file, often called a zone file. The following Resource Records are commonly used (a number of others are defined but not often used, or no longer used). In some cases, there may be multiple RR types associated with a name, and even multiple records of the same type.

Common DNS Resource Records
A: Address

This record contains the numerical IP address associated with the name.

CNAME: Canonical Name

This record contains the Canonical Name (an FQDN with an associated A record) of the host name to which this record is bound. This record type is used to provide name aliasing, by providing a link to another name with which other appropriate RR's are associated. If a name has a CNAME record bound to it, it is an alias, and no other RR's are permitted to be bound to the same name.

It is common for these records to be used to point to hosts providing a particular service, such as an FTP or HTTP server. If the service must be moved to another host, the alias can be changed, and the same name will reach the new host.

PTR: Pointer

This record contains a textual name. These records are bound to names built in a special way from numerical IP addresses, and are used to provide a reverse mapping from an IP address to a textual name..

NS: Name Server

This record type is used to delegate a sub-tree of the Domain Name space to another nameserver. The record contains the FQDN of a DNS nameserver with information on the sub-domain, and is bound to the name of the sub-domain. In this manner, the hierarchical structure of the DNS is established.

MX: Mail eXchange

This record contains the FQDN for a host that will accept SMTP electronic mail for the named domain, together with a priority value used to select an MX host when relaying mail. It is used to indicate other servers that are willing to receive and spool mail for the domain if the primary MX is unreachable for a time. It is also used to direct email to a central server, if desired, rather than to each and every individual workstation.

HINFO: Host Information

Contains two strings, intended for use to describe the host hardware and operating system platform. There are defined strings to use for some systems, but their use is not enforced. Some sites, because of security considerations, do not publicise this information.

TXT: Text

A free-form text field, sometimes used as a comment field, sometimes overlaid with site-specific additional meaning to be interpreted by local conventions.

SOA: Start of Authority

This record is required to appear for each zone file. It lists the primary nameserver and the email address of the person responsible for the domain, together with default values for a number of fields associated with maintaining consistency across multiple servers and caching of the results of DNS queries.

Q8 RPC (Remote Procedure Call)

a) RPC (Remote Procedure Call)

 Ans: Remote Procedure Call (RPC) is a protocol that one program can use to request a service from a program located in another computer in a network without having to understand network details. (A procedure call is also sometimes known as a function call or a subroutine call.) RPC uses the client/server model. The requesting program is a client and the service-providing program is the server. Like a regular or local procedure call, an RPC is a synchronous operation requiring the requesting program to be suspended until the results of the remote procedure are returned. However, the use of lightweight processes or threads that share the same address space allows multiple RPCs to be performed concurrently.

When program statements that use RPC are compiled into an executable program, a stub is included in the compiled code that acts as the representative of the remote procedure code. When the program is run and the procedure call is issued, the stub receives the request and forwards it to a client runtime program in the local computer. The client runtime program has the knowledge of how to address the remote computer and server application and sends the message across the network that requests the remote procedure. Similarly, the server includes a runtime program and stub that interface with the remote procedure itself. Results are returned the same way.

There are several RPC models and implementations. A popular model and implementation is the Open Software Foundation's Distributed Computing Environment (DCE). The Institute of Electrical and Electronics Engineers defines RPC in its ISO Remote Procedure Call Specification, ISO/IEC CD 11578 N6561, ISO/IEC, November 1991.

RPC spans the Transport layer and the Application layer in the Open Systems Interconnection (OSI) model of network communication. RPC makes it easier to develop an application that includes multiple programs distributed in a network.

b) Network Information System(NIS)

Ans NIS maintains configuration files for the entire network. For changes you only need to update the NIS files. NIS works for the information required for most administrative tasks, such as those relating to users, network access, or devices. For example, you cn maintain user and password information with an NIS service, having only to update those NIS password files.

 NIS files are kept on an NIS server. The NIS server maintains its information on special database files called maps.

How NIS works?
Within a n/w there must be atleast one machine acting as NIS server you can have multiple NIS servers each serving different NIS “domains”. NIS databases are in so called DBM format derived from ASCII databases. The master NIS server should have both ASCII databases and DBM databases. Slave servers will be notified to any change to NIS maps, via yppush program and automatically retrieve the necessary changes in order to synchronize their databases. NIS clients don’t need to do this since they always talk to NIS server to read the information stored in its DBM databases.
c) Network File System (NFS) NFS enables you to mount a file system on a remote computer as if it were local to your own system. You can then directly access any of the files on that remote file system. This has the advantage of allowing different systems on a network to access the same file directly, without each having to keep its own copy. Only one copy would be on a remote file system, which each computer could then access.
Types of NFS
· File downloading and uploading
· SMTP(email)
· HTTP (web)
· ftp, sftp
· rep, sep
· rdist, rsync
· File System : Processes can open files for I/O like on local drives:
· NFS

· Samba

· AFS

· DFS

 Sender

SMTP

SMTP

Spool

Receiver

Spool

Spool

POP3 or IMAP fetch

